2 resultados para Coastal changes

em Repositório Institucional da Universidade de Aveiro - Portugal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tidally induced currents in estuarine flows are usually modulated by the tidal regime and respond differently to changes imposed to its natural propagation due to geomorphologic alterations. Some of these changes are due to the implementation of heavy engineering works, most of the times imposed by navigation needs associated with harbours growth. The main purpose of this study is to evaluate the hydrodynamic response of Ria de Aveiro to an alteration on the present geometry of its inlet, which was artificially delimited in 1808 through the construction of two jetties. In order to provide access to deeper draft vessels to the Aveiro harbour, its Administration intends to create better conditions for navigation through the extension by 200 m of the north jetty. A bidimensional hydrodynamic model SIMSYS2D was used in this study to simulate two distinct situations: the actual Ria de Aveiro configuration (2009), which is used as reference, and other including the future inlet configuration with the jetty extension. Several simulations were performed, using both bathymetries and considering extreme tidal conditions as forcing on the model oceanic open boundary. The tidal prism at the lagoon mouth and at the main lagoon channels was determined. Values of sea surface elevation and horizontal current velocity were comparatively analyzed as well as harmonic analysis results. The results for the projected inlet increase comparatively to those for the present configuration, although the differences found are not significant for most of the cases analyzed. More studies should be performed in order to clarify the long term impact of these works on the lagoon hydrodynamics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Today the Ria de Aveiro of northern Portugal has a hydromorphological regime in which river influence is limited to periods of flood. For most of the annual cycle, tidal currents and wind waves are the major forcing agents in this complex coastal lagoon–estuarine system. The system has evolved over two centuries from one that was naturally fluvially dominant to one that is today tidally dominant. Human influence was a trigger for these changes, starting in 1808 when its natural evolution was halted by the construction of a new inlet/outlet channel through the mobile sand spit that isolates it from the Atlantic Ocean. In consequence, tidal ranges in the lagoon increased rapidly from ~0.1 m to >1 m and continued to increase, as a result of continued engineering works and dredging, today reaching ~3 m on spring tides. Hydromorphological adjustments that have taken place include the deepening of channels, an increase in the area of inter-tidal flats, regression of salt marsh, increased tidal propagation and increased saline intrusion. Loss of once abundant submerged aquatic vegetation (SAV), due to increased tidal flows, exacerbated by increased recreational activities, has been accompanied by a change from fine cohesive sediments to coarser, mobile sediments with reduced biological activity.