3 resultados para Classifier Generalization Ability
em Repositório Institucional da Universidade de Aveiro - Portugal
Resumo:
In a previous paper [M. Robbiano, E.A. Martins, and I. Gutman, Extending a theorem by Fiedler and applications to graph energy, MATCH Commun. Math. Comput. Chem. 64 (2010), pp. 145-156], a lemma by Fiedler was used to obtain eigenspaces of graphs, and applied to graph energy. In this article Fiedler's lemma is generalized and this generalization is applied to graph spectra and graph energy. © 2011 Taylor & Francis.
Resumo:
A family of quadratic programming problems whose optimal values are upper bounds on the independence number of a graph is introduced. Among this family, the quadratic programming problem which gives the best upper bound is identified. Also the proof that the upper bound introduced by Hoffman and Lovász for regular graphs is a particular case of this family is given. In addition, some new results characterizing the class of graphs for which the independence number attains the optimal value of the above best upper bound are given. Finally a polynomial-time algorithm for approximating the size of the maximum independent set of an arbitrary graph is described and the computational experiments carried out on 36 DIMACS clique benchmark instances are reported.
Resumo:
Taking a Fiedler’s result on the spectrum of a matrix formed from two symmetric matrices as a motivation, a more general result is deduced and applied to the determination of adjacency and Laplacian spectra of graphs obtained by a generalized join graph operation on families of graphs (regular in the case of adjacency spectra and arbitrary in the case of Laplacian spectra). Some additional consequences are explored, namely regarding the largest eigenvalue and algebraic connectivity.