2 resultados para Cell-wall-lacking
em Repositório Institucional da Universidade de Aveiro - Portugal
Resumo:
A estirpe Bacillus licheniformis I89 possui a capacidade de produzir alguns compostos com actividade antibacteriana. No presente estudo, a separação desses compostos foi realizada através da aplicação de vários procedimentos, incluindo extracção em fase sólida e cromatografia liquida de alta pressão. Dois destes compostos bioactivos constituem o lantibiótico de classe II lichenicidina e são caracterizados pela massas molecular de 3250 Da (Bliα) e 3020 Da (Bliβ). O cluster responsável pela biossíntese da lichenicidina foi heterologamente expresso em Escherichia coli, constituindo a primeira descrição da produção de um lantibiótico totalmente in vivo num hospedeiro Gram-negativo. Este sistema foi subsequentemente explorado com o objectivo de relacionar cada proteína codificada no cluster genético da lichenicidina na produção dos péptidos Bliα e Bliβ. O desenvolvimento do sistema de trans complementação possibilitou a produção de variantes destes péptidos. A análise das massas moleculares destas variantes assim como a análise dos padrões de fragmentação obtidos por MS/MS permitiu a revisão de algumas das características estruturais previamente proposta para Bliα e Bliβ. A análise dos genes hipoteticamente envolvidos na protecção da estirpe produtora contra a acção antibiótica da lichenicidina revelou, que em E. coli, a sua ausência não resulta no aumento da susceptibilidade a este composto. Verificou-se também que a presença destes genes não é essencial para a produção de lichenicidina em E. coli. Foi também confirmado experimentalmente que a membrana externa da E. coli constitui uma barreira natural para a entrada dos péptidos na célula. De facto, uma das características intrigantes da produção de lichenicidina por uma bactéria de Gram negativo reside no mecanismo de transporte dos dois péptidos através da membrana externa. Neste estudo foi demonstrado que na ausência da proteína de membrana TolC, a massa molecular de Bliα e Bliβ não foi identificada no sobrenadante de E. coli, demonstrando assim que a sua presença no ambiente extra-celular não se devia a um processo de lise bacteriana. Foi ainda avaliada a capacidade da maquinaria biossintética da lichenicidina para produzir o lantibiótico haloduracina, através do processamento de chimeras lichenicidina-haloduracina, contudo, os resultados foram negativos. Verificou-se ainda que em determinadas condições de incubação, a diferenciação da morfologia original da estirpe B. licheniformis I89 pode ocorrer. Esta dissociação implicou a transição da colónia parental e rugosa para uma colónia de aparência mais simples e suave. Desta forma, as diferenças das duas morfologias em termos de taxa de crescimento, esporulação e actividade antibiótica foram investigadas. Considerando especificamente Bliα e Bliβ verificou-se que a abundância destes péptidos nas culturas do fenótipo fino é geralmente inferior aquela identificada nas culturas do fenótipo parental. Por último, a diversidade de elementos genéticos constituintes de péptido sintetases não ribossomais (NRPS) foi investigada em lagoas no centro de Portugal e em solos provenientes de caves do sul de Portugal, revelando a presença de potenciais novas NRPS nestes ambientes.
Resumo:
Rapid and specific detection of foodborne bacteria that can cause food spoilage or illness associated to its consumption is an increasingly important task in food industry. Bacterial detection, identification, and classification are generally performed using traditional methods based on biochemical or serological tests and the molecular methods based on DNA or RNA fingerprints. However, these methodologies are expensive, time consuming and laborious. Infrared spectroscopy is a reliable, rapid, and economic technique which could be explored as a tool for bacterial analysis in the food industry. In this thesis it was evaluated the potential of IR spectroscopy to study the bacterial quality of foods. In Chapter 2, it was developed a calibration model that successfully allowed to predict the bacterial concentration of naturally contaminated cooked ham samples kept at refrigeration temperature during 8 days. In this part, it was developed the methodology that allowed the best reproducibility of spectra from bacteria colonies with minimal sample preparation, which was used in the subsequent work. Several attempts trying different resolutions and number of scans in the IR were made. A spectral resolution of 4 cm-1, with 32 scans were the settings that allowed the best results. Subsequently, in Chapter 3, it was made an attempt to identify 22 different foodborne bacterial genera/species using IR spectroscopy coupled with multivariate analysis. The principal component analysis, used as an exploratory technique, allowed to form distinct groups, each one corresponding to a different genus, in most of the cases. Then, a hierarchical cluster analysis was performed to further analyse the group formation and the possibility of distinction between species of the same bacterial genus. It was observed that IR spectroscopy not only is suitable to the distinction of the different genera, but also to differentiate species of the same genus, with the simultaneous use of principal component analysis and cluster analysis techniques. The utilization of IR spectroscopy and multivariate statistical analysis were also investigated in Chapter 4, in order to confirm the presence of Listeria monocytogenes and Salmonella spp. isolated from contaminated foods, after growth in selective medium. This would allow to substitute the traditional biochemical and serological methods that are used to confirm these pathogens and that delay the obtainment of the results up to 2 days. The obtained results allowed the distinction of 3 different Listeria species and the distinction of Salmonella spp. from other bacteria that can be mistaken with them. Finally, in chapter 5, high pressure processing, an emerging methodology that permits to produce microbiologically safe foods and extend their shelf-life, was applied to 12 foodborne bacteria to determine their resistance and the effects of pressure in cells. A treatment of 300 MPa, during 15 minutes at room temperature was applied. Gram-negative bacteria were inactivated to undetectable levels and Gram-positive showed different resistances. Bacillus cereus and Staphylococcus aureus decreased only 2 logs and Listeria innocua decreased about 5 logs. IR spectroscopy was performed in bacterial colonies before and after HPP in order to investigate the alterations of the cellular compounds. It was found that high pressure alters bands assigned to some cellular components as proteins, lipids, oligopolysaccharides, phosphate groups from the cell wall and nucleic acids, suggesting disruption of the cell envelopes. In this work, bacterial quantification and classification, as well as assessment of cellular compounds modification with high pressure processing were successfully performed. Taking this into account, it was showed that IR spectroscopy is a very promising technique to analyse bacteria in a simple and inexpensive manner.