4 resultados para CÁLCULO DFT
em Repositório Institucional da Universidade de Aveiro - Portugal
Resumo:
Introduzimos um cálculo das variações fraccional nas escalas temporais ℤ e (hℤ)!. Estabelecemos a primeira e a segunda condição necessária de optimalidade. São dados alguns exemplos numéricos que ilustram o uso quer da nova condição de Euler–Lagrange quer da nova condição do tipo de Legendre. Introduzimos também novas definições de derivada fraccional e de integral fraccional numa escala temporal com recurso à transformada inversa generalizada de Laplace.
Resumo:
A optimização estrutural é uma temática antiga em engenharia. No entanto, com o crescimento do método dos elementos finitos em décadas recentes, dá origem a um crescente número de aplicações. A optimização topológica, especificamente, surge associada a uma fase de definição de domínio efectivo de um processo global de optimização estrutural. Com base neste tipo de optimização, é possível obter a distribuição óptima de material para diversas aplicações e solicitações. Os materiais compósitos e alguns materiais celulares, em particular, encontram-se entre os materiais mais proeminentes dos nossos dias, em termos das suas aplicações e de investigação e desenvolvimento. No entanto, a sua estrutura potencialmente complexa e natureza heterogénea acarretam grandes complexidades, tanto ao nível da previsão das suas propriedades constitutivas quanto na obtenção das distribuições óptimas de constituintes. Procedimentos de homogeneização podem fornecer algumas respostas em ambos os casos. Em particular, a homogeneização por expansão assimptótica pode ser utilizada para determinar propriedades termomecânicas efectivas e globais a partir de volumes representativos, de forma flexível e independente da distribuição de constituintes. Além disso, integra processos de localização e fornece informação detalhada acerca de sensibilidades locais em metodologias de optimização multiescala. A conjugação destas áreas pode conduzir a metodologias de optimização topológica multiescala, nas quais de procede à obtenção não só de estruturas óptimas mas também das distribuições ideais de materiais constituintes. Os problemas associados a estas abordagens tendem, no entanto, a exigir recursos computacionais assinaláveis, criando muitas vezes sérias limitações à exequibilidade da sua resolução. Neste sentido, técnicas de cálculo paralelo e distribuído apresentam-se como uma potencial solução. Ao dividir os problemas por diferentes unidades memória e de processamento, é possível abordar problemas que, de outra forma, seriam proibitivos. O principal foco deste trabalho centra-se na importância do desenvolvimento de procedimentos computacionais para as aplicações referidas. Adicionalmente, estas conduzem a diversas abordagens alternativas na procura simultânea de estruturas e materiais para responder a aplicações termomecânicas. Face ao exposto, tudo isto é integrado numa plataforma computacional de optimização multiobjectivo multiescala em termoelasticidade, desenvolvida e implementada ao longo deste trabalho. Adicionalmente, o trabalho é complementado com a montagem e configuração de um cluster do tipo Beowulf, assim como com o desenvolvimento do código com vista ao cálculo paralelo e distribuído.
Resumo:
Nesta tese de doutoramento apresentamos um cálculo das variações fraccional generalizado. Consideramos problemas variacionais com derivadas e integrais fraccionais generalizados e estudamo-los usando métodos directos e indirectos. Em particular, obtemos condições necessárias de optimalidade de Euler-Lagrange para o problema fundamental e isoperimétrico, condições de transversalidade e teoremas de Noether. Demonstramos a existência de soluções, num espaço de funções apropriado, sob condições do tipo de Tonelli. Terminamos mostrando a existência de valores próprios, e correspondentes funções próprias ortogonais, para problemas de Sturm- Liouville.
Resumo:
O projeto teve como objetivo o desenvolvimento de um software auxiliar ao cálculo da ação do vento em estruturas abrangidas pelo Eurocódigo 1 (parte 4), a projetistas e alunos. Foi feita uma pesquisa focada em softwares semelhantes. Desse estudo verificou-se que atualmente nenhum cumpria satisfatoriamente alguns requisitos, tais como usabilidade, foco nas novas normas europeias, nem completos com os vários tipos de estruturas necessários para cálculo. O software descrito no documento foi chamado de XD-Wind. Foi desenvolvido em linguagem programática VisualBasic .NET, escolhida para de modo a garantir o equilibro entre o rigor científico e a apresentação dos resultados de uma forma compreensível a todos os utilizadores que tenham noções mínimas de estruturas isostáticas.