4 resultados para Bone cells

em Repositório Institucional da Universidade de Aveiro - Portugal


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present thesis aims to develop a biocompatible and electroconductor bone graft containing carbon nanotubes (CNTs) that allows the in situ regeneration of bone cells by applying pulsed external electrical stimuli. The CNTs were produced by chemical vapor deposition (CVD) by a semi-continuous method with a yield of ~500 mg/day. The deposition parameters were optimised to obtain high pure CNTs ~99.96% with controlled morphologies, fundamental requisites for the biomedical application under study. The chemical functionalisation of CNTs was also optimised to maximise their processability and biocompatibility. The CNTs were functionalised by the Diels-Alder cycloaddition of 1,3-butadiene. The biological behaviour of the functionalised CNTs was evaluated in vitro with the osteoblastic cells line MG63 and in vivo, by subcutaneous implantation in rats. The materials did not induce an expressed inflammatory response, but the functionalised CNTs showed a superior in vitro and in vivo biocompatibility than the non-functionalised ones. Composites of ceramic matrix, of bioglass (Glass) and hydroxyapatite (HA), reinforced with carbon nanotubes (CNT/Glass/HA) were processed by a wet approach. The incorporation of just 4.4 vol% of CNTs allowed the increase of 10 orders of magnitude of the electrical conductivity of the matrix. In vitro studies with MG63 cells show that the CNT/Glass/HA composites guarantee the adhesion and proliferation of bone cells, and stimulate their phenotype expression, namely the alkaline phosphate (ALP). The interactions between the composite materials and the culture medium (α-MEM), under an applied electrical external field, were studied by scanning vibrating electrode technique. An increase of the culture medium electrical conductivity and the electrical field confinement in the presence of the conductive samples submerged in the medium was demonstrated. The in vitro electrical stimulation of MG63 cells on the conductive composites promotes the increase of the cell metabolic activity and DNA content by 130% and 60%, relatively to the non-stimulated condition, after only 3 days of daily stimulation of 15 μA for 15 min. Moreover, the osteoblastic gene expression for Runx2, osteocalcin (OC) and ALP was enhanced by 80%, 50% and 25%, after 5 days of stimulation. Instead, for dielectric materials, the stimulus delivering was less efficient, giving an equal or lower cellular response than the non-stimulated condition. The proposed electroconductive bone grafts offer exciting possibilities in bone regeneration strategies by delivering in situ electrical stimulus to cells and consequent control of the new bone tissue formation rate. It is expected that conductive smart biomaterials might turn the selective bone electrotherapy of clinical relevance by decreasing the postoperative healing times.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

O cimento ósseo acrílico é o único material utilizado para a fixação de próteses em cirurgias ortopédicas, surgindo como uma alternativa às técnicas não cimentadas. Cerca de um milhão de pacientes são anualmente tratados para a substituição total da articulação do quadril e do joelho. Com a maior expectativa de vida da população e o aumento do número de cirurgias realizadas por ano espera-se que o uso do cimento ósseo aumente substancialmente. A fraca ligação do cimento ao osso é um problema comum que pode causar perda asséptica da prótese. Assim, torna-se necessário investir no desenvolvimento de cimentos ósseos alternativos que permitam promover maior estabilidade e melhor desempenho do implante. O principal objetivo desta tese foi desenvolver um cimento ósseo bioativo, capaz de ligar-se ao osso, com propriedades melhoradas relativamente aos sistemas convencionais. A preparação dos materiais foi realizada por dois processos diferentes, a polimerização por via térmica e a polimerização por via química. Inicialmente, utilizando o processo térmico, foram desenvolvidos compósitos de PMMA-co-EHA reforçados com vidro de sílica (CSi) e vidro de boro (CB) e comparados em termos do seu comportamento in vitro em meio acelular e celular. A formação de precipitados de fosfato de cálcio foi observada sobre a superfície de todos os compósitos indicando que estes materiais são potencialmente bioativos. Em relação à avaliação biológica o CSi demonstrou um efeito indutor da proliferação das células. As células apresentaram uma morfologia normal e alta taxa de crescimento quando comparadas com o padrão de cultura. Por outro lado ocorreu inibição da proliferação celular para o CB provavelmente devido à sua elevada taxa de degradação, levando a uma elevada concentraçao de iões de B e de Mg no meio de cultura. O efeito do vidro nos cimentos curados por via química, incorporando um activador de baixa toxicidade, também foi avaliado. Os resultados sugerem que as novas formulações podem diminuir o efeito exotérmico na cura do cimento e melhorar as propriedades mecânicas (flexão e compressão). Outro estudo conduzido neste trabalho explorou a possibilidade de incorporar ibuprofeno (fármaco anti-inflamatório) no cimento, dando origem a um material capaz de ser simultaneamente, bioativo e promotor da libertação controlada de fármacos. Neste contexto foi evidenciado que o desempenho do cimento desenvolvido pode contribuir para minimizar o processo inflamatório associado a uma cirurgia ortopédica. Finalmente, a fase sólida do cimento ósseo bioativo foi modificada por diferentes polímeros biodegradáveis. A adição deste enchimento deu origem a um cimento parcialmente biodegradável que pode permitir a formação de poros e o crescimento ósseo para o interior do cimento, resultando numa melhor fixação da prótese.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mesenchymal stromal cells are adult stem cells found mostly in the bone marrow. They have immunosuppressive properties and they have been successfully applied as biological therapy in several clinical trials regarding autoimmune diseases. Despite the great number of clinical trials, MSCs’ action is not fully understand and there are no identified markers that correlate themselves with the immunomodulatory power. A lipidomic approach can solve some of these problems once lipids are one of the major cells’ components. Therefore, in this study cells’ lipidome was analysed and its deviations were evaluated according to the medium of culture and to the presence of pro-inflammatory stimuli, mimicking physiological conditions in which these cells are used. This was the first study ever made that aimed to analyse the differences in the phospholipid profile between mesenchymal stromal cells non-stimulated and stimulated with proinflammatory stimulus. This analysis was conducted in both cells cultured in medium supplemented with animal serum and in cells cultured in a synthetic medium. In cells cultured in the standard medium the levels of phosphatidylcholine (PC) species with shorter fatty acids (FAs) acyl chains decreased under pro-inflammatory stimuli. The level of PC(40:6) also decreased, which may be correlated with enhanced levels of lysoPC (LPC)(18:0) - an anti-inflammatory LPC - observed in cells subjected to TNF-α and IFN-γ. Simultaneously, the relative amounts of PC(36:1) and PC(38:4) increased. TNF-α and IFN- γ also enhanced the levels of phosphatidylethanolamine PE(40:6) and decreased the levels of PE(38:6). Higher expression of phosphatidylserine PS(36:1) and sphingomyelin SM(34:0) along with a decrease in PS(38:6) levels were observed. However, in cells cultured in a synthetic medium, TNF-α and IFN-γ only enhanced the levels of PS(36:1). These results indicate that lipid metabolism and signaling is modulated during mesenchymal stromal cells action.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of scaffolds based on biomaterials is a promising strategy for Tissue Engineering and cellular regeneration. This work focuses on Bone Tissue Engineering, the aim is to develop electrically tailored biomaterials with different crystalline and electric features, and study their impacts onto cell biological behavior, so as to predict the materials output in the enhancement of bone tissue regeneration. It is accepted that bone exhibits piezoelectricity, a property that has been proved to be involved in bone growth/repair mechanism regulation. In addition electrical stimulations have been proved to influence bone growth and repair. Piezoelectric materials are therefore widely investigated for a potential use in bone tissue engineering. The main goal is the development of novel strategies to produce and employ piezoelectric biomaterials, with detailed knowledge of mechanisms involved in cell-material interaction. In the current work, poly (L-lactic) acid (PLLA), a synthetic semi-crystalline polymer, exhibiting biodegradibility, biocompatibility and piezoelectricity is studied and proposed as a promoter of enhanced tissue regeneration. PLLA has already been approved for implantation in human body by the Food and Drug Administration (FDA), and at the moment it is being used in several clinical strategies. The present study consists of first preparing films with different degrees of crystallinity and characterizing these PLLA films, in terms of surface and structural properties, and subsequently assessing the behavior of cells in terms of viability, proliferation, morphology and mineralization for each PLLA configuration. PLLA films were prepared using the solvent cast technique and submitted to different thermal treatments in order to obtain different degrees of crystallinity. Those platforms were then electrically poled, positively and negatively, by corona discharge in order to tailor their electrical properties. The cellular assays were conducted by using two different osteoblast cell lines grown directly onto the PLLA films:Human osteoblast Hob, a primary cell culture and Human osteosarcoma MG-63 cell line. This thesis gives also a comprehensive introduction to the area of Bone Tissue Engineering and provides a review of the work done in this field in the past until today, in that same field, including the one related with bone’s piezoelectricity. Then the experimental part deals with the effects of the crystallinity degrees and of the polarization in terms of surface properties and cellular bio assays. Three different degrees of crystallinity, and three different polarization conditions were prepared; which results in 9 different configurations under investigation.