1 resultado para Bivariate Exponential
em Repositório Institucional da Universidade de Aveiro - Portugal
Filtro por publicador
- Repository Napier (1)
- Aberdeen University (1)
- Aberystwyth University Repository - Reino Unido (2)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Aquatic Commons (26)
- Archive of European Integration (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (10)
- Aston University Research Archive (3)
- B-Digital - Universidade Fernando Pessoa - Portugal (4)
- Biblioteca Digital da Câmara dos Deputados (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (11)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (8)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (24)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (18)
- Boston University Digital Common (6)
- Bulgarian Digital Mathematics Library at IMI-BAS (11)
- CaltechTHESIS (21)
- Cambridge University Engineering Department Publications Database (38)
- CentAUR: Central Archive University of Reading - UK (18)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (152)
- Cochin University of Science & Technology (CUSAT), India (14)
- Collection Of Biostatistics Research Archive (7)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (6)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons at Florida International University (4)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (3)
- DigitalCommons@University of Nebraska - Lincoln (1)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (22)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (19)
- FAUBA DIGITAL: Repositorio institucional científico y académico de la Facultad de Agronomia de la Universidad de Buenos Aires (2)
- Greenwich Academic Literature Archive - UK (8)
- Helda - Digital Repository of University of Helsinki (18)
- Indian Institute of Science - Bangalore - Índia (195)
- Instituto Politécnico do Porto, Portugal (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Massachusetts Institute of Technology (5)
- National Center for Biotechnology Information - NCBI (2)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (8)
- Publishing Network for Geoscientific & Environmental Data (1)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (61)
- Queensland University of Technology - ePrints Archive (167)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositorio Institucional de la Universidad Pública de Navarra - Espanha (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (34)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- Universidad de Alicante (4)
- Universidad Politécnica de Madrid (7)
- Universidade Complutense de Madrid (1)
- Universitat de Girona, Spain (1)
- Université de Montréal, Canada (2)
- University of Michigan (8)
- University of Queensland eSpace - Australia (3)
- University of Washington (1)
Resumo:
The study of forest re activity, in its several aspects, is essencial to understand the phenomenon and to prevent environmental public catastrophes. In this context the analysis of monthly number of res along several years is one aspect to have into account in order to better comprehend this tematic. The goal of this work is to analyze the monthly number of forest res in the neighboring districts of Aveiro and Coimbra, Portugal, through dynamic factor models for bivariate count series. We use a bayesian approach, through MCMC methods, to estimate the model parameters as well as to estimate the common latent factor to both series.