2 resultados para Bebê

em Repositório Institucional da Universidade de Aveiro - Portugal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chapter 1 introduces the scope of the work by identifying the clinically relevant prenatal disorders and presently available diagnostic methods. The methodology followed in this work is presented, along with a brief account of the principles of the analytical and statistical tools employed. A thorough description of the state of the art of metabolomics in prenatal research concludes the chapter, highlighting the merit of this novel strategy to identify robust disease biomarkers. The scarce use of maternal and newborn urine in previous reports enlightens the relevance of this work. Chapter 2 presents a description of all the experimental details involved in the work performed, comprising sampling, sample collection and preparation issues, data acquisition protocols and data analysis procedures. The proton Nuclear Magnetic Resonance (NMR) characterization of maternal urine composition in healthy pregnancies is presented in Chapter 3. The urinary metabolic profile characteristic of each pregnancy trimester was defined and a 21-metabolite signature found descriptive of the metabolic adaptations occurring throughout pregnancy. 8 metabolites were found, for the first time to our knowledge, to vary in connection to pregnancy, while known metabolic effects were confirmed. This chapter includes a study of the effects of non-fasting (used in this work) as a possible confounder. Chapter 4 describes the metabolomic study of 2nd trimester maternal urine for the diagnosis of fetal disorders and prediction of later-developing complications. This was achieved by applying a novel variable selection method developed in the context of this work. It was found that fetal malformations (FM) (and, specifically those of the central nervous system, CNS) and chromosomal disorders (CD) (and, specifically, trisomy 21, T21) are accompanied by changes in energy, amino acids, lipids and nucleotides metabolic pathways, with CD causing a further deregulation in sugars metabolism, urea cycle and/or creatinine biosynthesis. Multivariate analysis models´ validation revealed classification rates (CR) of 84% for FM (87%, CNS) and 85% for CD (94%, T21). For later-diagnosed preterm delivery (PTD), preeclampsia (PE) and intrauterine growth restriction (IUGR), it is found that urinary NMR profiles have early predictive value, with CRs ranging from 84% for PTD (11-20 gestational weeks, g.w., prior to diagnosis), 94% for PE (18-24 g.w. pre-diagnosis) and 94% for IUGR (2-22 g.w. pre-diagnosis). This chapter includes results obtained for an ultraperformance liquid chromatography-mass spectrometry (UPLC-MS) study of pre-PTD samples and correlation with NMR data. One possible marker was detected, although its identification was not possible. Chapter 5 relates to the NMR metabolomic study of gestational diabetes mellitus (GDM), establishing a potentially predictive urinary metabolic profile for GDM, 2-21 g.w. prior to diagnosis (CR 83%). Furthermore, the NMR spectrum was shown to carry information on individual phenotypes, able to predict future insulin treatment requirement (CR 94%). Chapter 6 describes results that demonstrate the impact of delivery mode (CR 88%) and gender (CR 76%) on newborn urinary profile. It was also found that newborn prematurity, respiratory depression, large for gestational age growth and malformations induce relevant metabolic perturbations (CR 82-92%), as well as maternal conditions, namely GDM (CR 82%) and maternal psychiatric disorders (CR 91%). Finally, the main conclusions of this thesis are presented in Chapter 7, highlighting the value of maternal or newborn urine metabolomics for pregnancy monitoring and disease prediction, towards the development of new early and non-invasive diagnostic methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main scope of this work was to evaluate the metabolic effects of anticancer agents (three conventional and one new) in osteosarcoma (OS) cells and osteoblasts, by measuring alterations in the metabolic profile of cells by nuclear magnetic resonance (NMR) spectroscopy metabolomics. Chapter 1 gives a theoretical framework of this work, beginning with the main metabolic characteristics that globally describe cancer as well as the families and mechanisms of action of drugs used in chemotherapy. The drugs used nowadays to treat OS are also presented, together with the Palladium(II) complex with spermine, Pd2Spm, potentially active against cancer. Then, the global strategy for cell metabolomics is explained and the state of the art of metabolomic studies that analyze the effect of anticancer agents in cells is presented. In Chapter 2, the fundamentals of the analytical techniques used in this work, namely for biological assays, NMR spectroscopy and multivariate and statistical analysis of the results are described. A detailed description of the experimental procedures adopted throughout this work is given in Chapter 3. The biological and analytical reproducibility of the metabolic profile of MG-63 cells by high resolution magic angle spinning (HRMAS) NMR is evaluated in Chapter 4. The metabolic impact of several factors (cellular integrity, spinning rate, temperature, time and acquisition parameters) on the 1H HRMAS NMR spectral profile and quality is analysed, enabling the definition of the best acquisition parameters for further experiments. The metabolic consequences of increasing number of passages in MG-63 cells as well as the duration of storage are also investigated. Chapter 5 describes the metabolic impact of drugs conventionally used in OS chemotherapy, through NMR metabolomics studies of lysed cells and aqueous extracts analysis. The results show that MG-63 cells treated with cisplatin (cDDP) undergo a strong up-regulation of lipid contents, alterations in phospholipid constituents (choline compounds) and biomarkers of DNA degradation, all associated with cell death by apoptosis. Cells exposed to doxorubicin (DOX) or methotrexate (MTX) showed much slighter metabolic changes, without any relevant alteration in lipid contents. However, metabolic changes associated with altered Krebs cycle, oxidative stress and nucleotides metabolism were detected and were tentatively interpreted at the light of the known mechanisms of action of these drugs. The metabolic impact of the exposure of MG-63 cells and osteoblasts to cDDP and the Pd2Spm complex is described in Chapter 6. Results show that, despite the ability of the two agents to bind DNA, the metabolic consequences that arise from exposure to them are distinct, namely in what concerns to variation in lipid contents (absent for Pd2Spm). Apoptosis detection assays showed that, differently from what was seen for MG-63 cells treated with cDDP, the decreased number of living cells upon exposure to Pd2Spm was not due to cell death by apoptosis or necrosis. Moreover, the latter agent induces more marked alterations in osteoblasts than in cancer cells, while the opposite seemed to occur upon cDDP exposure. Nevertheless, the results from MG-63 cells exposure to combination regimens with cDDP- or Pd2Spm-based cocktails, described in Chapter 7, revealed that, in combination, the two agents induce similar metabolic responses, arising from synergy mechanisms between the tested drugs. Finally, the main conclusions of this thesis are summarized in Chapter 8, and future perspectives in the light of this work are presented.