3 resultados para Bacterial Load
em Repositório Institucional da Universidade de Aveiro - Portugal
Resumo:
Esta tese teve como objectivo estudar estratégias de conservação de pescado fresco, recorrendo ao uso de extractos e óleos essenciais de plantas e do processamento por alta pressão (HPP), usando filetes de robalo como um caso de estudo modelo. Relativamente aos extractos e óleos essenciais, avaliaram-se as suas propriedades antibacterianas e antioxidantes. Os extractos aquosos quente de poejo e de orégão e o óleo essencial de cravinho apresentaram a maior actividade antioxidante. Os óleos essenciais foram mais eficientes do que os extractos para inibir o crescimento das estirpes bacterianas testadas, tendo-se observado os menores valores de concentração mínima inibitória nos óleos essenciais de orégão, citronela, alho e orégão Espanhol. De seguida, estudou-se o efeito dos óleos essenciais de orégão Espanhol e de limão na conservação de filetes de robalo fresco tendo em conta critérios microbiológicos, químicos, físicos e sensoriais. A aplicação do óleo essencial de orégão Espanhol aumentou o tempo de vida útil dos filetes sob o ponto de vista bacteriano, mas não em termos sensoriais. A combinação dos óleos essenciais de orégão Espanhol e de limão melhorou o efeito antioxidante e reduziu a intensidade do odor e a sua eficácia em relação às Enterobacteriaceae, comparando com o tratamento com óleo essencial de orégão Espanhol per se. No sentido de reduzir o odor conferido pelos óleos essenciais realizou-se um estudo de conservação para avaliar o efeito de películas com óleos essenciais (citronela, alho e tomilho) em filetes de robalo, recorrendo a uma teste de desafio bacteriano. As películas sem óleos essenciais aumentaram o tempo de vida útil sob o ponto de vista bacteriano, mas este efeito não foi observado com a incorporação dos óleos essenciais nas películas. Em relação ao HPP, testaram-se diversas condições (nível de pressão, tempo de pressurização e taxa de pressurização) e avaliaram-se os efeitos na actividade enzimática, na qualidade global e na conservação de filetes de robalo fresco. Em geral, o aumento do nível de pressão e do tempo de pressurização diminuiu a actividade da fosfatase ácida e das enzimas proteolíticas, a carga bacteriana e a capacidade de retenção de água, enquanto que os filetes ficaram mais brancos. O HPP revelou potencial para o desenvolvimento de novos produtos: mais brancos, não translúcidos, mais firmes e com maior tempo de frescura e estabilidade microbiológica. Em conclusão, os óleos essenciais e o HPP têm potencial para conservar pescado fresco, devido aos seus efeitos na qualidade bacteriana. Ainda assim, mais esforços devem ser feitos no sentido de reduzir a transferência de odor dos óleos essenciais para o pescado e os efeitos do HPP no aspecto do pescado e na oxidação lipídica.
Resumo:
Bacterial infections are an increasing problem for human health. In fact, an increasing number of infections are caused by bacteria that are resistant to most antibiotics and their combinations. Therefore, the scientific community is currently searching for new solutions to fight bacteria and infectious diseases, without promoting antimicrobial resistance. One of the most promising strategies is the disruption or attenuation of bacterial Quorum Sensing (QS), a refined system that bacteria use to communicate. In a QS event, bacteria produce and release specific small chemicals, signal molecules - autoinducers (AIs) - into the environment. At the same time that bacterial population grows, the concentration of AIs in the bacterial environment increases. When a threshold concentration of AIs is reached, bacterial cells respond to it by altering their gene expression profile. AIs regulate gene expression as a function of cell population density. Phenotypes mediated by QS (QSphenotypes) include virulence factors, toxin production, antibiotic resistance and biofilm formation. In this work, two polymeric materials (linear polymers and molecularly imprinted nanoparticles) were developed and their ability to attenuate QS was evaluated. Both types of polymers should to be able to adsorb bacterial signal molecules, limiting their availability in the extracellular environment, with expected disruption of QS. Linear polymers were composed by one of two monomers (itaconic acid and methacrylic acid), which are known to possess strong interactions with the bacterial signal molecules. Molecularly imprinted polymer nanoparticles (MIP NPs) are particles with recognition capabilities for the analyte of interest. This ability is attained by including the target analyte at the synthesis stage. Vibrio fischeri and Aeromonas hydrophila were used as model species for the study. Both the linear polymers and MIP NPs, tested free in solutions and coated to surfaces, showed ability to disrupt QS by decreasing bioluminescence of V. fischeri and biofilm formation of A. hydrophila. No significant effect on bacterial growth was detected. The cytotoxicity of the two types of polymers to a fibroblast-like cell line (Vero cells) was also tested in order to evaluate their safety. The results showed that both the linear polymers and MIP NPs were not cytotoxic in the testing conditions. In conclusion, the results reported in this thesis, show that the polymers developed are a promising strategy to disrupt QS and reduce bacterial infection and resistance. In addition, due to their low toxicity, solubility and easy integration by surface coating, the polymers have potential for applications in scenarios where bacterial infection is a problem: medicine, pharmaceutical, food industry and in agriculture or aquaculture.
Resumo:
Rapid and specific detection of foodborne bacteria that can cause food spoilage or illness associated to its consumption is an increasingly important task in food industry. Bacterial detection, identification, and classification are generally performed using traditional methods based on biochemical or serological tests and the molecular methods based on DNA or RNA fingerprints. However, these methodologies are expensive, time consuming and laborious. Infrared spectroscopy is a reliable, rapid, and economic technique which could be explored as a tool for bacterial analysis in the food industry. In this thesis it was evaluated the potential of IR spectroscopy to study the bacterial quality of foods. In Chapter 2, it was developed a calibration model that successfully allowed to predict the bacterial concentration of naturally contaminated cooked ham samples kept at refrigeration temperature during 8 days. In this part, it was developed the methodology that allowed the best reproducibility of spectra from bacteria colonies with minimal sample preparation, which was used in the subsequent work. Several attempts trying different resolutions and number of scans in the IR were made. A spectral resolution of 4 cm-1, with 32 scans were the settings that allowed the best results. Subsequently, in Chapter 3, it was made an attempt to identify 22 different foodborne bacterial genera/species using IR spectroscopy coupled with multivariate analysis. The principal component analysis, used as an exploratory technique, allowed to form distinct groups, each one corresponding to a different genus, in most of the cases. Then, a hierarchical cluster analysis was performed to further analyse the group formation and the possibility of distinction between species of the same bacterial genus. It was observed that IR spectroscopy not only is suitable to the distinction of the different genera, but also to differentiate species of the same genus, with the simultaneous use of principal component analysis and cluster analysis techniques. The utilization of IR spectroscopy and multivariate statistical analysis were also investigated in Chapter 4, in order to confirm the presence of Listeria monocytogenes and Salmonella spp. isolated from contaminated foods, after growth in selective medium. This would allow to substitute the traditional biochemical and serological methods that are used to confirm these pathogens and that delay the obtainment of the results up to 2 days. The obtained results allowed the distinction of 3 different Listeria species and the distinction of Salmonella spp. from other bacteria that can be mistaken with them. Finally, in chapter 5, high pressure processing, an emerging methodology that permits to produce microbiologically safe foods and extend their shelf-life, was applied to 12 foodborne bacteria to determine their resistance and the effects of pressure in cells. A treatment of 300 MPa, during 15 minutes at room temperature was applied. Gram-negative bacteria were inactivated to undetectable levels and Gram-positive showed different resistances. Bacillus cereus and Staphylococcus aureus decreased only 2 logs and Listeria innocua decreased about 5 logs. IR spectroscopy was performed in bacterial colonies before and after HPP in order to investigate the alterations of the cellular compounds. It was found that high pressure alters bands assigned to some cellular components as proteins, lipids, oligopolysaccharides, phosphate groups from the cell wall and nucleic acids, suggesting disruption of the cell envelopes. In this work, bacterial quantification and classification, as well as assessment of cellular compounds modification with high pressure processing were successfully performed. Taking this into account, it was showed that IR spectroscopy is a very promising technique to analyse bacteria in a simple and inexpensive manner.