3 resultados para Automatic Editing
em Repositório Institucional da Universidade de Aveiro - Portugal
Resumo:
Coronary CT angiography is widely used in clinical practice for the assessment of coronary artery disease. Several studies have shown that the same exam can also be used to assess left ventricle (LV) function. LV function is usually evaluated using just the data from end-systolic and end-diastolic phases even though coronary CT angiography (CTA) provides data concerning multiple cardiac phases, along the cardiac cycle. This unused wealth of data, mostly due to its complexity and the lack of proper tools, has still to be explored in order to assess if further insight is possible regarding regional LV functional analysis. Furthermore, different parameters can be computed to characterize LV function and while some are well known by clinicians others still need to be evaluated concerning their value in clinical scenarios. The work presented in this thesis covers two steps towards extended use of CTA data: LV segmentation and functional analysis. A new semi-automatic segmentation method is presented to obtain LV data for all cardiac phases available in a CTA exam and a 3D editing tool was designed to allow users to fine tune the segmentations. Regarding segmentation evaluation, a methodology is proposed in order to help choose the similarity metrics to be used to compare segmentations. This methodology allows the detection of redundant measures that can be discarded. The evaluation was performed with the help of three experienced radiographers yielding low intraand inter-observer variability. In order to allow exploring the segmented data, several parameters characterizing global and regional LV function are computed for the available cardiac phases. The data thus obtained is shown using a set of visualizations allowing synchronized visual exploration. The main purpose is to provide means for clinicians to explore the data and gather insight over their meaning, as well as their correlation with each other and with diagnosis outcomes. Finally, an interactive method is proposed to help clinicians assess myocardial perfusion by providing automatic assignment of lesions, detected by clinicians, to a myocardial segment. This new approach has obtained positive feedback from clinicians and is not only an improvement over their current assessment method but also an important first step towards systematic validation of automatic myocardial perfusion assessment measures.
Resumo:
O objeto principal desta tese é o estudo de algoritmos de processamento e representação automáticos de dados, em particular de informação obtida por sensores montados a bordo de veículos (2D e 3D), com aplicação em contexto de sistemas de apoio à condução. O trabalho foca alguns dos problemas que, quer os sistemas de condução automática (AD), quer os sistemas avançados de apoio à condução (ADAS), enfrentam hoje em dia. O documento é composto por duas partes. A primeira descreve o projeto, construção e desenvolvimento de três protótipos robóticos, incluindo pormenores associados aos sensores montados a bordo dos robôs, algoritmos e arquitecturas de software. Estes robôs foram utilizados como plataformas de ensaios para testar e validar as técnicas propostas. Para além disso, participaram em várias competições de condução autónoma tendo obtido muito bons resultados. A segunda parte deste documento apresenta vários algoritmos empregues na geração de representações intermédias de dados sensoriais. Estes podem ser utilizados para melhorar técnicas já existentes de reconhecimento de padrões, deteção ou navegação, e por este meio contribuir para futuras aplicações no âmbito dos AD ou ADAS. Dado que os veículos autónomos contêm uma grande quantidade de sensores de diferentes naturezas, representações intermédias são particularmente adequadas, pois podem lidar com problemas relacionados com as diversas naturezas dos dados (2D, 3D, fotométrica, etc.), com o carácter assíncrono dos dados (multiplos sensores a enviar dados a diferentes frequências), ou com o alinhamento dos dados (problemas de calibração, diferentes sensores a disponibilizar diferentes medições para um mesmo objeto). Neste âmbito, são propostas novas técnicas para a computação de uma representação multi-câmara multi-modal de transformação de perspectiva inversa, para a execução de correcção de côr entre imagens de forma a obter mosaicos de qualidade, ou para a geração de uma representação de cena baseada em primitivas poligonais, capaz de lidar com grandes quantidades de dados 3D e 2D, tendo inclusivamente a capacidade de refinar a representação à medida que novos dados sensoriais são recebidos.
Resumo:
Nos últimos anos temos vindo a assistir a uma mudança na forma como a informação é disponibilizada online. O surgimento da web para todos possibilitou a fácil edição, disponibilização e partilha da informação gerando um considerável aumento da mesma. Rapidamente surgiram sistemas que permitem a coleção e partilha dessa informação, que para além de possibilitarem a coleção dos recursos também permitem que os utilizadores a descrevam utilizando tags ou comentários. A organização automática dessa informação é um dos maiores desafios no contexto da web atual. Apesar de existirem vários algoritmos de clustering, o compromisso entre a eficácia (formação de grupos que fazem sentido) e a eficiência (execução em tempo aceitável) é difícil de encontrar. Neste sentido, esta investigação tem por problemática aferir se um sistema de agrupamento automático de documentos, melhora a sua eficácia quando se integra um sistema de classificação social. Analisámos e discutimos dois métodos baseados no algoritmo k-means para o clustering de documentos e que possibilitam a integração do tagging social nesse processo. O primeiro permite a integração das tags diretamente no Vector Space Model e o segundo propõe a integração das tags para a seleção das sementes iniciais. O primeiro método permite que as tags sejam pesadas em função da sua ocorrência no documento através do parâmetro Social Slider. Este método foi criado tendo por base um modelo de predição que sugere que, quando se utiliza a similaridade dos cossenos, documentos que partilham tags ficam mais próximos enquanto que, no caso de não partilharem, ficam mais distantes. O segundo método deu origem a um algoritmo que denominamos k-C. Este para além de permitir a seleção inicial das sementes através de uma rede de tags também altera a forma como os novos centróides em cada iteração são calculados. A alteração ao cálculo dos centróides teve em consideração uma reflexão sobre a utilização da distância euclidiana e similaridade dos cossenos no algoritmo de clustering k-means. No contexto da avaliação dos algoritmos foram propostos dois algoritmos, o algoritmo da “Ground truth automática” e o algoritmo MCI. O primeiro permite a deteção da estrutura dos dados, caso seja desconhecida, e o segundo é uma medida de avaliação interna baseada na similaridade dos cossenos entre o documento mais próximo de cada documento. A análise de resultados preliminares sugere que a utilização do primeiro método de integração das tags no VSM tem mais impacto no algoritmo k-means do que no algoritmo k-C. Além disso, os resultados obtidos evidenciam que não existe correlação entre a escolha do parâmetro SS e a qualidade dos clusters. Neste sentido, os restantes testes foram conduzidos utilizando apenas o algoritmo k-C (sem integração de tags no VSM), sendo que os resultados obtidos indicam que a utilização deste algoritmo tende a gerar clusters mais eficazes.