2 resultados para Automated data analysis
em Repositório Institucional da Universidade de Aveiro - Portugal
Resumo:
O projecto de sequenciação do genoma humano veio abrir caminho para o surgimento de novas áreas transdisciplinares de investigação, como a biologia computacional, a bioinformática e a bioestatística. Um dos resultados emergentes desde advento foi a tecnologia de DNA microarrays, que permite o estudo do perfil da expressão de milhares de genes, quando sujeitos a perturbações externas. Apesar de ser uma tecnologia relativamente consolidada, continua a apresentar um conjunto vasto de desafios, nomeadamente do ponto de vista computacional e dos sistemas de informação. São exemplos a optimização dos procedimentos de tratamento de dados bem como o desenvolvimento de metodologias de interpretação semi-automática dos resultados. O principal objectivo deste trabalho consistiu em explorar novas soluções técnicas para agilizar os procedimentos de armazenamento, partilha e análise de dados de experiências de microarrays. Com esta finalidade, realizou-se uma análise de requisitos associados às principais etapas da execução de uma experiência, tendo sido identificados os principais défices, propostas estratégias de melhoramento e apresentadas novas soluções. Ao nível da gestão de dados laboratoriais, é proposto um LIMS (Laboratory Information Management System) que possibilita a gestão de todos os dados gerados e dos procedimentos realizados. Este sistema integra ainda uma solução que permite a partilha de experiências, de forma a promover a participação colaborativa de vários investigadores num mesmo projecto, mesmo usando LIMS distintos. No contexto da análise de dados, é apresentado um modelo que facilita a integração de algoritmos de processamento e de análise de experiências no sistema desenvolvido. Por fim, é proposta uma solução para facilitar a interpretação biológica de um conjunto de genes diferencialmente expressos, através de ferramentas que integram informação existente em diversas bases de dados biomédicas.
Resumo:
The Asymmetric Power Arch representation for the volatility was introduced by Ding et al.(1993) in order to account for asymmetric responses in the volatility in the analysis of continuous-valued financial time series like, for instance, the log-return series of foreign exchange rates, stock indices or share prices. As reported by Brannas and Quoreshi (2010), asymmetric responses in volatility are also observed in time series of counts such as the number of intra-day transactions in stocks. In this work, an asymmetric power autoregressive conditional Poisson model is introduced for the analysis of time series of counts exhibiting asymmetric overdispersion. Basic probabilistic and statistical properties are summarized and parameter estimation is discussed. A simulation study is presented to illustrate the proposed model. Finally, an empirical application to a set of data concerning the daily number of stock transactions is also presented to attest for its practical applicability in data analysis.