4 resultados para Aqueous Media

em Repositório Institucional da Universidade de Aveiro - Portugal


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Ionic liquids are a class of solvents that, due to their unique properties, have been proposed in the past few years as alternatives to some hazardous volatile organic compounds. They are already used by industry, where it was possible to improve different processes by the incorporation of this kind of non-volatile and often liquid solvents. However, even if ionic liquids cannot contribute to air pollution, due to their negligible vapour pressures, they can be dispersed thorough aquatic streams thus contaminating the environment. Therefore, the main goals of this work are to study the mutual solubilities between water and different ionic liquids in order to infer on their environmental impact, and to propose effective methods to remove and, whenever possible, recover ionic liquids from aqueous media. The liquid-liquid phase behaviour of different ionic liquids and water was evaluated in the temperature range between (288.15 and 318.15) K. For higher melting temperature ionic liquids a narrower temperature range was studied. The gathered data allowed a deep understanding on the structural effects of the ionic liquid, namely the cation core, isomerism, symmetry, cation alkyl chain length and the anion nature through their mutual solubilities (saturation values) with water. The experimental data were also supported by the COnductor-like Screening MOdel for Real Solvents (COSMO-RS), and for some more specific systems, molecular dynamics simulations were also employed for a better comprehension of these systems at a molecular level. On the other hand, in order to remove and recover ionic liquids from aqueous solutions, two different methods were studied: one based on aqueous biphasic systems, that allowed an almost complete recovery of hydrophilic ionic liquids (those completely miscible with water at temperatures close to room temperature) by the addition of strong salting-out agents (Al2(SO4)3 or AlK(SO4)2); and the other based on the adsorption of several ionic liquids onto commercial activated carbon. The first approach, in addition to allowing the removal of ionic liquids from aqueous solutions, also makes possible to recover the ionic liquid and to recycle the remaining solution. In the adsorption process, only the removal of the ionic liquid from aqueous solutions was attempted. Nevertheless, a broad understanding of the structural effects of the ionic liquid on the adsorption process was attained, and a final improvement on the adsorption of hydrophilic ionic liquids by the addition of an inorganic salt (Na2SO4) was also achieved. Yet, the development of a recovery process that allows the reuse of the ionic liquid is still required for the development of sustainable processes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Significant improvements in human health have been achieved through the increased consumption of pharmaceutical drugs. However, most of these active pharmaceutical ingredients (APIs) are excreted by mammals (in a metabolized or unchanged form) into the environment. The presence of residual amounts of these contaminants was already confirmed in aqueous streams since treatment processes either wastewater treatment plants (WWTPs) or sewage treatment plants (STPs) are not specifically designed for this type of pollutants. Although they are present in aqueous effluents, they are usually at very low concentrations, most of the times below the detection limits of analytical equipment used for their quantification, hindering their accurate monitoring. Therefore, the development of a pre-concentration technique in order to accurately quantify and monitor these components in aqueous streams is of major relevance. This work addresses the use of liquid-liquid equilibria, applying ionic liquids (ILs), for the extraction and concentration of non-steroidal anti-inflammatory drugs (NSAIDs) from aqueous effluents. Particularly, aqueous biphasic systems (ABSs) composed of ILs and potassium citrate were investigated in the extraction and concentration of naproxen, diclofenac and ketoprofen from aqueous media. Both the extraction efficiency and concentration factor achievable by these systems was determined and evaluated. Within the best conditions, extraction efficiencies of 99.4% and concentration factors up to 13 times were obtained.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this thesis, 2,2’-bipyridine (bipy), di-tert-butyl-2,2’-bipyridine (di-t-Bubipy), 2,2’-bipyridine-5,5’-dicarboxylic acid (H2bpdc), 2-[3(5)-pyrazolyl]pyridine (pzpy) and 2-(1-pentyl-3-pyrazolyl)pyridine (pent-pp) ligands were used as the N,N-chelate ligands in the formation of discrete [MoO2Cl2L]-type complexes. These complexes were employed as precursors for the preparation in aqueous media of oxomolybdenum(VI) products with a wide range of structural diversity. Three distinct heating methods were studied: hydrothermal, reflux or microwave-assisted synthesis. An alternative reaction with the inorganic molybdenum(VI) trioxide (MoO3) and the ligands di-t-Bu-bipy, H2bpdc and pzpy was also investigated under hydrothermal conditions. The distinct nature of the N,N-chelate ligands and/or the heating method employed promoted the isolation of a series of new oxomolybdenum(VI) hybrid materials that clearly reflected the strong structure-directing influence of these ligands. Thus, this thesis describes the synthesis and characterization of the discrete mononuclear [MoO2Cl2(pent-pp)], the dinuclear [Mo2O6(di-t-Bu-bipy)2] and the octanuclear [Mo8O22(OH)4(di-t-Bu-bipy)4] complexes as well as the highly unique polymeric materials {[MoO3(bipy)][MoO3(H2O)]}n, (DMA)[MoO3(Hbpdc)]·nH2O, [Mo3O9(pzpy)]n and [Mo2O6(pent-pp)]n (fine structural details of compound [Mo2O6(pent-pp)]n are presently unknown; however, characterization data strongly pointed toward a polymeric oxide hybrid compound). The catalytic behaviour of the discrete complexes and the polymeric compounds was tested in olefin epoxidation reactions. Compounds [Mo3O9(pzpy)]n and [Mo2O6(pent-pp)]n acted as sources of soluble active species that where identified as the oxodiperoxido complexes [MoO(O2)2(pzpy)] and [MoO(O2)2(pent-pp)], respectively. The majority of the compounds here presented were fully characterized by using solid-state techniques, namely elemental analyses, thermogravimetry, FT-IR, solid-state NMR, electron microscopy and powder X-ray diffraction (both from laboratory and/or synchrotron sources).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bioactive glasses and glass–ceramics are a class of biomaterials which elicit special response on their surface when in contact with biological fluids, leading to strong bonding to living tissue. This particular trait along with good sintering ability and high mechanical strength make them ideal materials for scaffold fabrication. The work presented in this thesis is directed towards understanding the composition-structure-property relationships in potentially bioactive glasses designed in CaOMgOP2O5SiO2F system, in some cases with added Na2O. The main emphasis has been on unearthing the influence of glass composition on molecular structure, sintering ability and bioactivity of phosphosilicate glasses. The parent glass compositions have been designed in the primary crystallization field of the pseudo-ternary system of diopside (CaO•MgO•2SiO2) – fluorapatite (9CaO•3P2O5•CaF2) – wollastonite (CaO•SiO2), followed by studying the impact of compositional variations on the structure-property relationships and sintering ability of these glasses. All the glasses investigated in this work have been synthesized via melt-quenching route and have been characterized for their molecular structure, sintering ability, chemical degradation and bioactivity using wide array of experimental tools and techniques. It has been shown that in all investigated glass compositions the silicate network was mainly dominated by Q2 units while phosphate in all the glasses was found to be coordinated in orthophosphate environment. The glass compositions designed in alkali-free region of diopside – fluorapatite system demonstrated excellent sintering ability and good bioactivity in order to qualify them as potential materials for scaffold fabrication while alkali-rich bioactive glasses not only hinder the densification during sintering but also induce cytotoxicity in vitro, thus, are not ideal candidates for in vitro tissue engineering. One of our bioglass compositions with low sodium content has been tested successfully both in vivo and in preliminary clinical trials. But this work needs to be continued and deepened. The dispersing of fine glass particles in aqueous media or in other suitable solvents, and the study of the most important factors that affect the rheology of the suspensions are essential steps to enable the manufacture of porous structures with tailor-made hierarchical pores by advanced processing techniques such as Robocasting.