2 resultados para Antígeno recombinante
em Repositório Institucional da Universidade de Aveiro - Portugal
Resumo:
As carbapenemases, serínicas e metalo-β-lactamases (MBLs), formam um grupo cada vez mais importante de β-lactamases capazes de tornar as bactérias resistentes a antibióticos β-lactâmicos, incluindo carbapenemos utilizados como antibióticos de último recurso no tratamento de infecções causadas por bactérias multirresistentes. De modo a compreender melhor a relação estrutura-função deste grupo de enzimas, prosseguimos com a caracterização bioquímica e estrutural das carbapenemases SFC-1 e Sfh-I específicas de Serratia fonticola UTAD54, uma estirpe ambiental isolada previamente de águas de consumo não tratadas no Nordeste de Portugal. Ambas as β-lactamases foram sobre-expressas em Escherichia coli e purificadas por cromatografia líquida. A SFC-1 recombinante, uma carbapenemase serínica, hidrolisa eficientemente antibióticos β-lactâmicos de todas as classes e exibe, comparativamente a enzimas relacionadas (ex. KPC), uma maior eficiência contra a ceftazidima e uma menor susceptibilidade aos inibidores convencionais das β-lactamases. As estruturas do cristal da SFC-1 nativa e de complexos de mutantes, obtidos por mutagénese dirigida, com o meropenemo não hidrolisado e na forma de acetilenzima foram determinados por substituição molecular utilizando cristalografia de raios-X. A estrutura da SFC-1 contém todas as características conservadas do centro activo das carbapenemases de classe A. Nas estruturas dos mutantes o meropenemo aparece orientado no centro activo por Thr236 e Thr238, posicionando-o próximo da Ser130 para a transferência do protão. Nas enzimas de classe A inibidas por carbapenemos, a interacção com a Arg244 impõe uma orientação diferente do meropenemo ligado, prejudicando a transferência do protão. Estas constituem as primeiras estruturas de uma carbapenemase de classe A com um carbapenemo no centro activo e revelam que estas enzimas alteram a orientação do meropenemo ligado para promover a catálise, sem alteração significativa da estrutura geral. A Sfh-I, tal como as outras MBLs da subclasse B2, apresenta um perfil de substratos reduzido, que inclui maioritariamente os carbapenemos. A Sfh-I hidrolisa imipenemo e meropenemo com um kcat de 51 e 109 s-1 e um KM de 79 e 215 μM, respectivamente. A Sfh-I liga um equivalente de zinco, como demonstrado por espectrometria de massa. Contrariamente a enzimas da subclasse B2 previamente caracterizadas, a Sfh-I hidrolisa a cefepima, mostrando que a Sfh-I é uma MBL da subclasse B2 com propriedades únicas. Por espectroscopia de fluorescência mostrou-se que a Sfh-I é capaz de ligar até 3 equivalentes de zinco (Kd2 = 95 μM; Kd3 = 2.3 mM). A estrutura do cristal da Sfh-I, determinada por substituição molecular utilizando a CphA como modelo, é a primeira para uma MBL da subclasse B2 não ligada. Esta estrutura revela a disposição das moléculas de água no centro activo corroborando um mecanismo catalítico para as MBLs da subclasse B2 no qual a His118, em vez do Asp120 proposto anteriormente, activa a molécula de água nucleofílica.
Resumo:
The genetic code is not universal. Alterations to its standard form have been discovered in both prokaryotes and eukaryotes and demolished the dogma of an immutable code. For instance, several Candida species translate the standard leucine CUG codon as serine. In the case of the human pathogen Candida albicans, a serine tRNA (tRNACAGSer) incorporates in vivo 97% of serine and 3% of leucine in proteins at CUG sites. Such ambiguity is flexible and the level of leucine incorporation increases significantly in response to environmental stress. To elucidate the function of such ambiguity and clarify whether the identity of the CUG codon could be reverted from serine back to leucine, we have developed a forced evolution strategy to increase leucine incorporation at CUGs and a fluorescent reporter system to monitor such incorporation in vivo. Leucine misincorporation increased from 3% up to nearly 100%, reverting CUG identity from serine back to leucine. Growth assays showed that increasing leucine incorporation produced impressive arrays of phenotypes of high adaptive potential. In particular, strains with high levels of leucine misincorporation exhibited novel phenotypes and high level of tolerance to antifungals. Whole genome re-sequencing revealed that increasing levels of leucine incorporation were associated with accumulation of single nucleotide polymorphisms (SNPs) and loss of heterozygozity (LOH) in the higher misincorporating strains. SNPs accumulated preferentially in genes involved in cell adhesion, filamentous growth and biofilm formation, indicating that C. albicans uses its natural CUG ambiguity to increase genetic diversity in pathogenesis and drug resistance related processes. The overall data provided evidence for unantecipated flexibility of the C. albicans genetic code and highlighted new roles of codon ambiguity on the evolution of genetic and phenotypic diversity.