3 resultados para Algebra, Boolean.
em Repositório Institucional da Universidade de Aveiro - Portugal
Resumo:
When studying a biological regulatory network, it is usual to use boolean network models. In these models, boolean variables represent the behavior of each component of the biological system. Taking in account that the size of these state transition models grows exponentially along with the number of components considered, it becomes important to have tools to minimize such models. In this paper, we relate bisimulations, which are relations used in the study of automata (general state transition models) with attractors, which are an important feature of biological boolean models. Hence, we support the idea that bisimulations can be important tools in the study some main features of boolean network models.We also discuss the differences between using this approach and other well-known methodologies to study this kind of systems and we illustrate it with some examples.
Resumo:
Taking a Fiedler’s result on the spectrum of a matrix formed from two symmetric matrices as a motivation, a more general result is deduced and applied to the determination of adjacency and Laplacian spectra of graphs obtained by a generalized join graph operation on families of graphs (regular in the case of adjacency spectra and arbitrary in the case of Laplacian spectra). Some additional consequences are explored, namely regarding the largest eigenvalue and algebraic connectivity.
Resumo:
Compressed sensing is a new paradigm in signal processing which states that for certain matrices sparse representations can be obtained by a simple l1-minimization. In this thesis we explore this paradigm for higher-dimensional signal. In particular three cases are being studied: signals taking values in a bicomplex algebra, quaternionic signals, and complex signals which are representable by a nonlinear Fourier basis, a so-called Takenaka-Malmquist system.