1 resultado para Alarmes
em Repositório Institucional da Universidade de Aveiro - Portugal
Resumo:
A análise das séries temporais de valores inteiros tornou-se, nos últimos anos, uma área de investigação importante, não só devido à sua aplicação a dados de contagem provenientes de diversos campos da ciência, mas também pelo facto de ser uma área pouco explorada, em contraste com a análise séries temporais de valores contínuos. Uma classe que tem obtido especial relevo é a dos modelos baseados no operador binomial thinning, da qual se destaca o modelo auto-regressivo de valores inteiros de ordem p. Esta classe é muito vasta, pelo que este trabalho tem como objectivo dar um contributo para a análise estatística de processos de contagem que lhe pertencem. Esta análise é realizada do ponto de vista da predição de acontecimentos, aos quais estão associados mecanismos de alarme, e também da introdução de novos modelos que se baseiam no referido operador. Em muitos fenómenos descritos por processos estocásticos a implementação de um sistema de alarmes pode ser fundamental para prever a ocorrência de um acontecimento futuro. Neste trabalho abordam-se, nas perspectivas clássica e bayesiana, os sistemas de alarme óptimos para processos de contagem, cujos parâmetros dependem de covariáveis de interesse e que variam no tempo, mais concretamente para o modelo auto-regressivo de valores inteiros não negativos com coeficientes estocásticos, DSINAR(1). A introdução de novos modelos que pertencem à classe dos modelos baseados no operador binomial thinning é feita quando se propõem os modelos PINAR(1)T e o modelo SETINAR(2;1). O modelo PINAR(1)T tem estrutura periódica, cujas inovações são uma sucessão periódica de variáveis aleatórias independentes com distribuição de Poisson, o qual foi estudado com detalhe ao nível das suas propriedades probabilísticas, métodos de estimação e previsão. O modelo SETINAR(2;1) é um processo auto-regressivo de valores inteiros, definido por limiares auto-induzidos e cujas inovações formam uma sucessão de variáveis independentes e identicamente distribuídas com distribuição de Poisson. Para este modelo estudam-se as suas propriedades probabilísticas e métodos para estimar os seus parâmetros. Para cada modelo introduzido, foram realizados estudos de simulação para comparar os métodos de estimação que foram usados.