2 resultados para Air Dispersion Modeling
em Repositório Institucional da Universidade de Aveiro - Portugal
Resumo:
The purpose of this work is to carry out a comprehensive study on the Western Iberian Margin (WIM) circulation my means of numerical modeling, and to postulate what this circulation will be in the future. The adopted approach was the development of a regional ocean model configuration with high resolution, capable of reproducing the largeand small-scale dynamics of the coastal transition zone. Four numerical experiences were carried out according to these objectives: (1) a climatological run, in order to study the system’s seasonal behavior and its mean state; (2) a run forced with real winds and fluxes for period 2001-2011 in order to study the interannual variability of the system; (3) a run forced with mean fields from Global Climate Models (GCMs) for the present, in order to validate GCMs as adequate forcing for regional ocean modeling; (4) a similar run (3) for period 2071-2100, in order to assess possible consequences of a future climate scenario on the hydrography and dynamics of the WIM. Furthermore, two Lagrangian particle studies were carried out: one in order to trace the origin of the upwelled waters along the WIM; the other in order to portrait the patterns of larval dispersal, accumulation and connectivity. The numerical configuration proved to be adequate in the reproduction of the system’s mean state, seasonal characterization and an interannual variability study. There is prevalence of poleward flow at the slope, which coexists with the upwelling jet during summer, although there is evidence of its shifting offshore, and which is associated with the Mediterranean Water flow at deeper levels, suggesting a barotropic character. From the future climate scenario essay, the following conclusions were drawn: there is general warming and freshening of upper level waters; there is still poleward tendency, and despite the upwellingfavorable winds strengthening in summer the respective coastal band becomes more restricted in width and depth. In what concerns larval connectivity and dispersion along the WIM, diel vertical migration was observed to increase recruitment throughout the domain, and while smooth coastlines are better suppliers, there is higher accumulation where the topography is rougher.
Resumo:
The better understanding of the interactions between climate change and air quality is an emerging priority for research and policy. Climate change will bring changes in the climate system, which will affect the concentration and dispersion of air pollutants. The main objective of the current study is to assess the impacts of climate change on air quality in 2050 over Portugal and Porto urban area. First, an evaluation and characterization of the air quality over mainland Portugal was performed for the period between 2002 and 2012. The results show that NO2, PM10 and O3 are the critical pollutants in Portugal. Also, the influence of meteorology on O3, NO2 and PM10 levels was investigate in the national main urban areas (Porto and Lisboa) and was verified that O3 has a statistically significant relationship with temperature in most of the components. The results also indicate that emission control strategies are primary regulators for NO2 and PM10 levels. After, understanding the national air quality problems and the influence that meteorology had in the historical air quality levels, the air quality modelling system WRF-CAMx was tested and the required inputs for the simulations were prepared to fulfil the main goal of this work. For the required air quality modelling inputs, an Emission Projections under RCP scenarios (EmiPro-RCP) model was developed to assist the estimation of future emission inventories for GHG and common air pollutants. Also, the current emissions were estimated for Portugal with a higher detailed disaggregation to improve the performance of the air quality simulations. The air quality modelling system WRF/CAMx was tested and evaluated over Portugal and Porto urban area and the results point out that is an adequate tool for the analysis of air quality under climate change. For this purpose, regional simulations of air quality during historical period and future (2045-2050) were conducted with CAMx version 6.0 to evaluate the impacts of simulated future climate and anthropogenic emission projections on air quality over the study area. The climate and the emission projections were produced under the RCP8.5 scenario. The results from the simulations point out, that if the anthropogenic emissions keep the same in 2050, the concentrations of NO2, PM10 and O3 will increase in Portugal. When, besides the climate change effects, is consider the projected anthropogenic emissions the annual mean concentrations of NO2 decrease significantly in Portugal and Porto urban area, and on the contrary the annual mean PM10 concentrations increases in Portugal and decrease in Porto urban area. The O3 results are mainly caused by the reduction of ozone precursors, getting the higher reductions in urban areas and increases in the surrounding areas. All the analysis performed for both simulations for Porto urban area support that, for PM10 and O3, there will be an increase in the occurrence of extreme values, surpassing the annual legislated parameters and having more daily exceedances. This study constitutes an innovative scientific tool to help in future air quality management in order to mitigate future climate change impacts on air quality.