8 resultados para ,Wireless Mobile Network.

em Repositório Institucional da Universidade de Aveiro - Portugal


Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the modern society, new devices, applications and technologies, with sophisticated capabilities, are converging in the same network infrastructure. Users are also increasingly demanding in personal preferences and expectations, desiring Internet connectivity anytime and everywhere. These aspects have triggered many research efforts, since the current Internet is reaching a breaking point trying to provide enough flexibility for users and profits for operators, while dealing with the complex requirements raised by the recent evolution. Fully aligned with the future Internet research, many solutions have been proposed to enhance the current Internet-based architectures and protocols, in order to become context-aware, that is, to be dynamically adapted to the change of the information characterizing any network entity. In this sense, the presented Thesis proposes a new architecture that allows to create several networks with different characteristics according to their context, on the top of a single Wireless Mesh Network (WMN), which infrastructure and protocols are very flexible and self-adaptable. More specifically, this Thesis models the context of users, which can span from their security, cost and mobility preferences, devices’ capabilities or services’ quality requirements, in order to turn a WMN into a set of logical networks. Each logical network is configured to meet a set of user context needs (for instance, support of high mobility and low security). To implement this user-centric architecture, this Thesis uses the network virtualization, which has often been advocated as a mean to deploy independent network architectures and services towards the future Internet, while allowing a dynamic resource management. This way, network virtualization can allow a flexible and programmable configuration of a WMN, in order to be shared by multiple logical networks (or virtual networks - VNs). Moreover, the high level of isolation introduced by network virtualization can be used to differentiate the protocols and mechanisms of each context-aware VN. This architecture raises several challenges to control and manage the VNs on-demand, in response to user and WMN dynamics. In this context, we target the mechanisms to: (i) discover and select the VN to assign to an user; (ii) create, adapt and remove the VN topologies and routes. We also explore how the rate of variation of the user context requirements can be considered to improve the performance and reduce the complexity of the VN control and management. Finally, due to the scalability limitations of centralized control solutions, we propose a mechanism to distribute the control functionalities along the architectural entities, which can cooperate to control and manage the VNs in a distributed way.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Wireless communication technologies have become widely adopted, appearing in heterogeneous applications ranging from tracking victims, responders and equipments in disaster scenarios to machine health monitoring in networked manufacturing systems. Very often, applications demand a strictly bounded timing response, which, in distributed systems, is generally highly dependent on the performance of the underlying communication technology. These systems are said to have real-time timeliness requirements since data communication must be conducted within predefined temporal bounds, whose unfulfillment may compromise the correct behavior of the system and cause economic losses or endanger human lives. The potential adoption of wireless technologies for an increasingly broad range of application scenarios has made the operational requirements more complex and heterogeneous than before for wired technologies. On par with this trend, there is an increasing demand for the provision of cost-effective distributed systems with improved deployment, maintenance and adaptation features. These systems tend to require operational flexibility, which can only be ensured if the underlying communication technology provides both time and event triggered data transmission services while supporting on-line, on-the-fly parameter modification. Generally, wireless enabled applications have deployment requirements that can only be addressed through the use of batteries and/or energy harvesting mechanisms for power supply. These applications usually have stringent autonomy requirements and demand a small form factor, which hinders the use of large batteries. As the communication support may represent a significant part of the energy requirements of a station, the use of power-hungry technologies is not adequate. Hence, in such applications, low-range technologies have been widely adopted. In fact, although low range technologies provide smaller data rates, they spend just a fraction of the energy of their higher-power counterparts. The timeliness requirements of data communications, in general, can be met by ensuring the availability of the medium for any station initiating a transmission. In controlled (close) environments this can be guaranteed, as there is a strict regulation of which stations are installed in the area and for which purpose. Nevertheless, in open environments, this is hard to control because no a priori abstract knowledge is available of which stations and technologies may contend for the medium at any given instant. Hence, the support of wireless real-time communications in unmanaged scenarios is a highly challenging task. Wireless low-power technologies have been the focus of a large research effort, for example, in the Wireless Sensor Network domain. Although bringing extended autonomy to battery powered stations, such technologies are known to be negatively influenced by similar technologies contending for the medium and, especially, by technologies using higher power transmissions over the same frequency bands. A frequency band that is becoming increasingly crowded with competing technologies is the 2.4 GHz Industrial, Scientific and Medical band, encompassing, for example, Bluetooth and ZigBee, two lowpower communication standards which are the base of several real-time protocols. Although these technologies employ mechanisms to improve their coexistence, they are still vulnerable to transmissions from uncoordinated stations with similar technologies or to higher power technologies such as Wi- Fi, which hinders the support of wireless dependable real-time communications in open environments. The Wireless Flexible Time-Triggered Protocol (WFTT) is a master/multi-slave protocol that builds on the flexibility and timeliness provided by the FTT paradigm and on the deterministic medium capture and maintenance provided by the bandjacking technique. This dissertation presents the WFTT protocol and argues that it allows supporting wireless real-time communication services with high dependability requirements in open environments where multiple contention-based technologies may dispute the medium access. Besides, it claims that it is feasible to provide flexible and timely wireless communications at the same time in open environments. The WFTT protocol was inspired on the FTT paradigm, from which higher layer services such as, for example, admission control has been ported. After realizing that bandjacking was an effective technique to ensure the medium access and maintenance in open environments crowded with contention-based communication technologies, it was recognized that the mechanism could be used to devise a wireless medium access protocol that could bring the features offered by the FTT paradigm to the wireless domain. The performance of the WFTT protocol is reported in this dissertation with a description of the implemented devices, the test-bed and a discussion of the obtained results.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis describes the design and implementation of a reliable centimeter-level indoor positioning system fully compatible with a conventional smartphone. The proposed system takes advantage of the smartphone audio I/O and processing capabilities to perform acoustic ranging in the audio band using non-invasive audio signals and it has been developed having in mind applications that require high accuracy, such as augmented reality, virtual reality, gaming and audio guides. The system works in a distributed operation mode, i.e. each smartphone is able to obtain its own position using only acoustic signals. To support the positioning system, a Wireless Sensor Network (WSN) of synchronized acoustic beacons is used. To keep the infrastructure in sync we have developed an Automatic Time Synchronization and Syntonization (ATSS) protocol with a standard deviation of the sync offset error below 1.25 μs. Using an improved Time Difference of Arrival (TDoA) estimation approach (which takes advantage of the beacon signals’ periodicity) and by performing Non-Line-of-Sight (NLoS) mitigation, we were able to obtain very stable and accurate position estimates with an absolute mean error of less than 10 cm in 95% of the cases and a mean standard deviation of 2.2 cm for a position refresh period of 350 ms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The last couple of decades have been the stage for the introduction of new telecommunication networks. It is expected that in the future all types of vehicles, such as cars, buses and trucks have the ability to intercommunicate and form a vehicular network. Vehicular networks display particularities when compared to other networks due to their continuous node mobility and their wide geographical dispersion, leading to a permanent network fragmentation. Therefore, the main challenges that this type of network entails relate to the intermittent connectivity and the long and variable delay in information delivery. To address the problems related to the intermittent connectivity, a new concept was introduced – Delay Tolerant Network (DTN). This architecture is built on a Store-Carry-and-Forward (SCF) mechanism in order to assure the delivery of information when there is no end-to-end path defined. Vehicular networks support a multiplicity of services, including the transportation of non-urgent information. Therefore, it is possible to conclude that the use of a DTN for the dissemination of non-urgent information is able to surpass the aforementioned challenges. The work developed focused on the use of DTNs for the dissemination of non-urgent information. This information is originated in the network service provider and should be available on mobile network terminals during a limited period of time. In order to do so, four different strategies were deployed: Random, Least Number of Hops First (LNHF), Local Rarest Bundle First (LRBF) e Local Rarest Generation First (LRGF). All of these strategies have a common goal: to disseminate content into the network in the shortest period of time and minimizing network congestion. This work also contemplates the analysis and implementation of techniques that reduce network congestion. The design, implementation and validation of the proposed strategies was divided into three stages. The first stage focused on creating a Matlab emulator for the fast implementation and strategy validation. This stage resulted in the four strategies that were afterwards implemented in the DTNs software Helix – developed in a partnership between Instituto de Telecomunicac¸˜oes (IT) and Veniam R , which are responsible for the largest operating vehicular network worldwide that is located in Oporto city. The strategies were later evaluated on an emulator that was built for the largescale testing of DTN. Both emulators account for vehicular mobility based on information previously collected from the real platform. Finally, the strategy that presented the best overall performance was tested on a real platform – in a lab environment – for concept and operability demonstration. It is possible to conclude that two of the implemented strategies (LRBF and LRGF) can be deployed in the real network and guarantee a significant delivery rate. The LRBF strategy has the best performance in terms of delivery. However, it needs to add a significant overhead to the network in order to work. In the future, tests of scalability should be conducted in a real environment in order to confirm the emulator results. The real implementation of the strategies should be accompanied by the introduction of new types of services for content distribution.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Na última década tem-se assistido a um crescimento exponencial das redes de comunicações sem fios, nomeadamente no que se refere a taxa de penetração do serviço prestado e na implementação de novas infra-estruturas em todo o globo. É ponto assente neste momento que esta tendência irá não só continuar como se fortalecer devido à convergência que é esperada entre as redes móveis sem fio e a disponibilização de serviços de banda larga para a rede Internet fixa, numa evolução para um paradigma de uma arquitectura integrada e baseada em serviços e aplicações IP. Por este motivo, as comunicações móveis sem fios irão ter um papel fundamental no desenvolvimento da sociedade de informação a médio e longo prazos. A estratégia seguida no projecto e implementação das redes móveis celulares da actual geração (2G e 3G) foi a da estratificação da sua arquitectura protocolar numa estrutura modular em camadas estanques, onde cada camada do modelo é responsável pela implementação de um conjunto de funcionalidades. Neste modelo a comunicação dá-se apenas entre camadas adjacentes através de primitivas de comunicação pré-estabelecidas. Este modelo de arquitectura resulta numa mais fácil implementação e introdução de novas funcionalidades na rede. Entretanto, o facto das camadas inferiores do modelo protocolar não utilizarem informação disponibilizada pelas camadas superiores, e vice-versa acarreta uma degradação no desempenho do sistema. Este paradigma é particularmente importante quando sistemas de antenas múltiplas são implementados (sistemas MIMO). Sistemas de antenas múltiplas introduzem um grau adicional de liberdade no que respeita a atribuição de recursos rádio: o domínio espacial. Contrariamente a atribuição de recursos no domínio do tempo e da frequência, no domínio espacial os recursos rádio mapeados no domínio espacial não podem ser assumidos como sendo completamente ortogonais, devido a interferência resultante do facto de vários terminais transmitirem no mesmo canal e/ou slots temporais mas em feixes espaciais diferentes. Sendo assim, a disponibilidade de informação relativa ao estado dos recursos rádio às camadas superiores do modelo protocolar é de fundamental importância na satisfação dos critérios de qualidade de serviço exigidos. Uma forma eficiente de gestão dos recursos rádio exige a implementação de algoritmos de agendamento de pacotes de baixo grau de complexidade, que definem os níveis de prioridade no acesso a esses recursos por base dos utilizadores com base na informação disponibilizada quer pelas camadas inferiores quer pelas camadas superiores do modelo. Este novo paradigma de comunicação, designado por cross-layer resulta na maximização da capacidade de transporte de dados por parte do canal rádio móvel, bem como a satisfação dos requisitos de qualidade de serviço derivados a partir da camada de aplicação do modelo. Na sua elaboração, procurou-se que o standard IEEE 802.16e, conhecido por Mobile WiMAX respeitasse as especificações associadas aos sistemas móveis celulares de quarta geração. A arquitectura escalonável, o baixo custo de implementação e as elevadas taxas de transmissão de dados resultam num processo de multiplexagem de dados e valores baixos no atraso decorrente da transmissão de pacotes, os quais são atributos fundamentais para a disponibilização de serviços de banda larga. Da mesma forma a comunicação orientada à comutação de pacotes, inenente na camada de acesso ao meio, é totalmente compatível com as exigências em termos da qualidade de serviço dessas aplicações. Sendo assim, o Mobile WiMAX parece satisfazer os requisitos exigentes das redes móveis de quarta geração. Nesta tese procede-se à investigação, projecto e implementação de algoritmos de encaminhamento de pacotes tendo em vista a eficiente gestão do conjunto de recursos rádio nos domínios do tempo, frequência e espacial das redes móveis celulares, tendo como caso prático as redes móveis celulares suportadas no standard IEEE802.16e. Os algoritmos propostos combinam métricas provenientes da camada física bem como os requisitos de qualidade de serviço das camadas superiores, de acordo com a arquitectura de redes baseadas no paradigma do cross-layer. O desempenho desses algoritmos é analisado a partir de simulações efectuadas por um simulador de sistema, numa plataforma que implementa as camadas física e de acesso ao meio do standard IEEE802.16e.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the last decade, mobile wireless communications have witnessed an explosive growth in the user’s penetration rate and their widespread deployment around the globe. In particular, a research topic of particular relevance in telecommunications nowadays is related to the design and implementation of mobile communication systems of 4th generation (4G). 4G networks will be characterized by the support of multiple radio access technologies in a core network fully compliant with the Internet Protocol (all IP paradigms). Such networks will sustain the stringent quality of service (QoS) requirements and the expected high data rates from the type of multimedia applications (i.e. YouTube and Skype) to be available in the near future. Therefore, 4G wireless communications system will be of paramount importance on the development of the information society in the near future. As 4G wireless services will continue to increase, this will put more and more pressure on the spectrum availability. There is a worldwide recognition that methods of spectrum managements have reached their limit and are no longer optimal, therefore new paradigms must be sought. Studies show that most of the assigned spectrum is under-utilized, thus the problem in most cases is inefficient spectrum management rather spectrum shortage. There are currently trends towards a more liberalized approach of spectrum management, which are tightly linked to what is commonly termed as Cognitive Radio (CR). Furthermore, conventional deployment of 4G wireless systems (one BS in cell and mobile deploy around it) are known to have problems in providing fairness (users closer to the BS are more benefited relatively to the cell edge users) and in covering some zones affected by shadowing, therefore the use of relays has been proposed as a solution. To evaluate and analyse the performances of 4G wireless systems software tools are normally used. Software tools have become more and more mature in recent years and their need to provide a high level evaluation of proposed algorithms and protocols is now more important. The system level simulation (SLS) tools provide a fundamental and flexible way to test all the envisioned algorithms and protocols under realistic conditions, without the need to deal with the problems of live networks or reduced scope prototypes. Furthermore, the tools allow network designers a rapid collection of a wide range of performance metrics that are useful for the analysis and optimization of different algorithms. This dissertation proposes the design and implementation of conventional system level simulator (SLS), which afterwards enhances for the 4G wireless technologies namely cognitive Radios (IEEE802.22) and Relays (IEEE802.16j). SLS is then used for the analysis of proposed algorithms and protocols.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Future emerging market trends head towards positioning based services placing a new perspective on the way we obtain and exploit positioning information. On one hand, innovations in information technology and wireless communication systems enabled the development of numerous location based applications such as vehicle navigation and tracking, sensor networks applications, home automation, asset management, security and context aware location services. On the other hand, wireless networks themselves may bene t from localization information to improve the performances of di erent network layers. Location based routing, synchronization, interference cancellation are prime examples of applications where location information can be useful. Typical positioning solutions rely on measurements and exploitation of distance dependent signal metrics, such as the received signal strength, time of arrival or angle of arrival. They are cheaper and easier to implement than the dedicated positioning systems based on ngerprinting, but at the cost of accuracy. Therefore intelligent localization algorithms and signal processing techniques have to be applied to mitigate the lack of accuracy in distance estimates. Cooperation between nodes is used in cases where conventional positioning techniques do not perform well due to lack of existing infrastructure, or obstructed indoor environment. The objective is to concentrate on hybrid architecture where some nodes have points of attachment to an infrastructure, and simultaneously are interconnected via short-range ad hoc links. The availability of more capable handsets enables more innovative scenarios that take advantage of multiple radio access networks as well as peer-to-peer links for positioning. Link selection is used to optimize the tradeo between the power consumption of participating nodes and the quality of target localization. The Geometric Dilution of Precision and the Cramer-Rao Lower Bound can be used as criteria for choosing the appropriate set of anchor nodes and corresponding measurements before attempting location estimation itself. This work analyzes the existing solutions for node selection in order to improve localization performance, and proposes a novel method based on utility functions. The proposed method is then extended to mobile and heterogeneous environments. Simulations have been carried out, as well as evaluation with real measurement data. In addition, some speci c cases have been considered, such as localization in ill-conditioned scenarios and the use of negative information. The proposed approaches have shown to enhance estimation accuracy, whilst signi cantly reducing complexity, power consumption and signalling overhead.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The promise of a truly mobile experience is to have the freedom to roam around anywhere and not be bound to a single location. However, the energy required to keep mobile devices connected to the network over extended periods of time quickly dissipates. In fact, energy is a critical resource in the design of wireless networks since wireless devices are usually powered by batteries. Furthermore, multi-standard mobile devices are allowing users to enjoy higher data rates with ubiquitous connectivity. However, the bene ts gained from multiple interfaces come at a cost in terms of energy consumption having profound e ect on the mobile battery lifetime and standby time. This concern is rea rmed by the fact that battery lifetime is one of the top reasons why consumers are deterred from using advanced multimedia services on their mobile on a frequent basis. In order to secure market penetration for next generation services energy e ciency needs to be placed at the forefront of system design. However, despite recent e orts, energy compliant features in legacy technologies are still in its infancy, and new disruptive architectures coupled with interdisciplinary design approaches are required in order to not only promote the energy gain within a single protocol layer, but to enhance the energy gain from a holistic perspective. A promising approach is cooperative smart systems, that in addition to exploiting context information, are entities that are able to form a coalition and cooperate in order to achieve a common goal. Migrating from this baseline, this thesis investigates how these technology paradigm can be applied towards reducing the energy consumption in mobile networks. In addition, we introduce an additional energy saving dimension by adopting an interlayer design so that protocol layers are designed to work in synergy with the host system, rather than independently, for harnessing energy. In this work, we exploit context information, cooperation and inter-layer design for developing new energy e cient and technology agnostic building blocks for mobile networks. These technology enablers include energy e cient node discovery and short-range cooperation for energy saving in mobile handsets, complemented by energy-aware smart scheduling for promoting energy saving on the network side. Analytical and simulations results were obtained, and veri ed in the lab on a real hardware testbed. Results have shown that up to 50% energy saving could be obtained.