21 resultados para Tubos de calor


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Viscoelastic treatments are one of the most efficient treatments, as far as passive damping is concerned, particularly in the case of thin and light structures. In this type of treatment, part of the strain energy generated in the viscoelastic material is dissipated to the surroundings, in the form of heat. A layer of viscoelastic material is applied to a structure in an unconstrained or constrained configuration, the latter proving to be the most efficient arrangement. This is due to the fact that the relative movement of both the host and constraining layers cause the viscoelastic material to be subjected to a relatively high strain energy. There are studies, however, that claim that the partial application of the viscoelastic material is just as efficient, in terms of economic costs or any other form of treatment application costs. The application of patches of material in specific and selected areas of the structure, thus minimising the extension of damping material, results in an equally efficient treatment. Since the damping mechanism of a viscoelastic material is based on the dissipation of part of the strain energy, the efficiency of the partial treatment can be correlated to the modal strain energy of the structure. Even though the results obtained with this approach in various studies are considered very satisfactory, an optimisation procedure is deemed necessary. In order to obtain optimum solutions, however, time consuming numerical simulations are required. The optimisation process to use the minimum amount of viscoelastic material is based on an evolutionary geometry re-design and calculation of the modal damping, making this procedure computationally costly. To avert this disadvantage, this study uses adaptive layerwise finite elements and applies Genetic Algorithms in the optimisation process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of a new instrument for the measurement of convective and radiative is proposed, based on the transient operation of a transpiration radiometer. Current transpiration radiometers rely on steady state temperature measurements in a porous element crossed by a know gas mass flow. As a consequence of the porous sensing element’s intrinsically high thermal inertia, the instrument’s time constant is in the order of several seconds. The proposed instrument preserves established advantages of transpiration radiometers while incorporating additional features that broaden its applicability range. The most important developments are a significant reduction of the instrument’s response time and the possibility of separating and measuring the convective and radiative components of the heat flux. These objectives are achieved through the analysis of the instrument’s transient response, a pulsed gas flow being used to induce the transient behavior.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work is about the combination of functional ferroelectric oxides with Multiwall Carbon Nanotubes for microelectronic applications, as for example potential 3 Dimensional (3D) Non Volatile Ferroelectric Random Access Memories (NVFeRAM). Miniaturized electronics are ubiquitous now. The drive to downsize electronics has been spurred by needs of more performance into smaller packages at lower costs. But the trend of electronics miniaturization challenges board assembly materials, processes, and reliability. Semiconductor device and integrated circuit technology, coupled with its associated electronic packaging, forms the backbone of high-performance miniaturized electronic systems. However, as size decreases and functionalization increases in the modern electronics further size reduction is getting difficult; below a size limit the signal reliability and device performance deteriorate. Hence miniaturization of siliconbased electronics has limitations. On this background the Road Map for Semiconductor Industry (ITRS) suggests since 2011 alternative technologies, designated as More than Moore; being one of them based on carbon (carbon nanotubes (CNTs) and graphene) [1]. CNTs with their unique performance and three dimensionality at the nano-scale have been regarded as promising elements for miniaturized electronics [2]. CNTs are tubular in geometry and possess a unique set of properties, including ballistic electron transportation and a huge current caring capacity, which make them of great interest for future microelectronics [2]. Indeed CNTs might have a key role in the miniaturization of Non Volatile Ferroelectric Random Access Memories (NVFeRAM). Moving from a traditional two dimensional (2D) design (as is the case of thin films) to a 3D structure (based on a tridimensional arrangement of unidimensional structures) will result in the high reliability and sensing of the signals due to the large contribution from the bottom electrode. One way to achieve this 3D design is by using CNTs. Ferroelectrics (FE) are spontaneously polarized and can have high dielectric constants and interesting pyroelectric, piezoelectric, and electrooptic properties, being a key application of FE electronic memories. However, combining CNTs with FE functional oxides is challenging. It starts with materials compatibility, since crystallization temperature of FE and oxidation temperature of CNTs may overlap. In this case low temperature processing of FE is fundamental. Within this context in this work a systematic study on the fabrication of CNTs - FE structures using low cost low temperature methods was carried out. The FE under study are comprised of lead zirconate titanate (Pb1-xZrxTiO3, PZT), barium titanate (BaTiO3, BT) and bismuth ferrite (BiFeO3, BFO). The various aspects related to the fabrication, such as effect on thermal stability of MWCNTs, FE phase formation in presence of MWCNTs and interfaces between the CNTs/FE are addressed in this work. The ferroelectric response locally measured by Piezoresponse Force Microscopy (PFM) clearly evidenced that even at low processing temperatures FE on CNTs retain its ferroelectric nature. The work started by verifying the thermal decomposition behavior under different conditions of the multiwall CNTs (MWCNTs) used in this work. It was verified that purified MWCNTs are stable up to 420 ºC in air, as no weight loss occurs under non isothermal conditions, but morphology changes were observed for isothermal conditions at 400 ºC by Raman spectroscopy and Transmission Electron Microscopy (TEM). In oxygen-rich atmosphere MWCNTs started to oxidized at 200 ºC. However in argon-rich one and under a high heating rate MWCNTs remain stable up to 1300 ºC with a minimum sublimation. The activation energy for the decomposition of MWCNTs in air was calculated to lie between 80 and 108 kJ/mol. These results are relevant for the fabrication of MWCNTs – FE structures. Indeed we demonstrate that PZT can be deposited by sol gel at low temperatures on MWCNTs. And particularly interesting we prove that MWCNTs decrease the temperature and time for formation of PZT by ~100 ºC commensurate with a decrease in activation energy from 68±15 kJ/mol to 27±2 kJ/mol. As a consequence, monophasic PZT was obtained at 575 ºC for MWCNTs - PZT whereas for pure PZT traces of pyrochlore were still present at 650 ºC, where PZT phase formed due to homogeneous nucleation. The piezoelectric nature of MWCNTs - PZT synthesised at 500 ºC for 1 h was proved by PFM. In the continuation of this work we developed a low cost methodology of coating MWCNTs using a hybrid sol-gel / hydrothermal method. In this case the FE used as a proof of concept was BT. BT is a well-known lead free perovskite used in many microelectronic applications. However, synthesis by solid state reaction is typically performed around 1100 to 1300 ºC what jeopardizes the combination with MWCNTs. We also illustrate the ineffectiveness of conventional hydrothermal synthesis in this process due the formation of carbonates, namely BaCO3. The grown MWCNTs - BT structures are ferroelectric and exhibit an electromechanical response (15 pm/V). These results have broad implications since this strategy can also be extended to other compounds of materials with high crystallization temperatures. In addition the coverage of MWCNTs with FE can be optimized, in this case with non covalent functionalization of the tubes, namely with sodium dodecyl sulfate (SDS). MWCNTs were used as templates to grow, in this case single phase multiferroic BFO nanorods. This work shows that the use of nitric solvent results in severe damages of the MWCNTs layers that results in the early oxidation of the tubes during the annealing treatment. It was also observed that the use of nitric solvent results in the partial filling of MWCNTs with BFO due to the low surface tension (<119 mN/m) of the nitric solution. The opening of the caps and filling of the tubes occurs simultaneously during the refluxing step. Furthermore we verified that MWCNTs have a critical role in the fabrication of monophasic BFO; i.e. the oxidation of CNTs during the annealing process causes an oxygen deficient atmosphere that restrains the formation of Bi2O3 and monophasic BFO can be obtained. The morphology of the obtained BFO nano structures indicates that MWCNTs act as template to grow 1D structure of BFO. Magnetic measurements on these BFO nanostructures revealed a week ferromagnetic hysteresis loop with a coercive field of 956 Oe at 5 K. We also exploited the possible use of vertically-aligned multiwall carbon nanotubes (VA-MWCNTs) as bottom electrodes for microelectronics, for example for memory applications. As a proof of concept BiFeO3 (BFO) films were in-situ deposited on the surface of VA-MWCNTs by RF (Radio Frequency) magnetron sputtering. For in situ deposition temperature of 400 ºC and deposition time up to 2 h, BFO films cover the VA-MWCNTs and no damage occurs either in the film or MWCNTs. In spite of the macroscopic lossy polarization behaviour, the ferroelectric nature, domain structure and switching of these conformal BFO films was verified by PFM. A week ferromagnetic ordering loop was proved for BFO films on VA-MWCNTs having a coercive field of 700 Oe. Our systematic work is a significant step forward in the development of 3D memory cells; it clearly demonstrates that CNTs can be combined with FE oxides and can be used, for example, as the next 3D generation of FERAMs, not excluding however other different applications in microelectronics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Desde tempos históricos que diferentes tipos de lama são utilizados para aplicações externas no corpo humano, para fins terapêuticos e cosméticos. As lamas cuja beneficiação e caracterização físico-química são apresentadas nesta dissertação são formadas no ambiente hipersalino que existe nas salinas da Troncalhada e de São Tiago da Fonte, localizadas no estuário do rio Vouga, em Aveiro, Portugal. As salinas são constituídas por uma sequência de tanques onde, no período de verão, da água do mar e por evaporação natural, se produz sal marinho que precipita no último tanque (o cristalizador) do qual é extraído. Na base dos tanques ocorrem lamas que correspondem a sedimentos constituídos por material argiloso de cor preto-cinzento e que incorporam argila, silte, areia, bioclastos, sal, matéria orgânica e gás. A componente inorgânica da lama extraída do cristalizador foi estudada por Difracção de Raios-X (DRX) e Fluorescência de Raios-X (FRX), enquanto a componente orgânica da mesma lama foi estudada por Cromatografia de Gás- Espectrometria de Massa (GC-MS). Os estudos efectuados incidiram sobre amostras representativas de lama, obtidas antes e após refinação e beneficiação a que foi submetida a lama tal-qual colhida nas salinas. Foram utilizados métodos geofísicos para caracterizar e distinguir as lamas depositadas na época de safra e no período de interregno. Para o efeito, foram cravados tubos amostradores no sedimento que reveste o fundo dos tanques, tubos que seguidamente foram transportados para o laboratório para medição da condutividade eléctrica do topo até à base da coluna de sedimento amostrado. A refinação foi efectuada por elutriação de suspensões aquosas de lama utilizando um equipamento desenvolvido para o efeito e que permitiu concentrar a lama fina no overflow. Após floculação, sifonagem da água sobrenadante, dessalinização e centrifugação a lama refinada e beneficiada pôde ser incorporada em formulações com objectivos terapêuticos e cosméticos. O estudo microbiológico efectuado nas amostras de lama com sal e sem sal e na água das salinas permitiu identificar diversos tipos de bactérias e colónias presentes na lama e avaliar também os processos de esterilização testados. Concluiu-se que a lama hipersalina ou dessalinizada resultante do processamento a que foram submetidas, não deve ser aplicada ou incorporada em formulações tal-qual, pelo facto de em ambas terem sido identificadas bactérias como é o caso de Clostridium perfringens. Não obstante, se submetidas a esterilização utilizando autoclave a lama salina refinada e beneficiada poderá ser aplicada como peloide extemporâneo. Assim sendo foram desenvolvidas formulações dermoterapêuticas e dermocosméticas contendo lama beneficiada e dessalinizada e esterilizada termicamente.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The planar design of solid oxide fuel cell (SOFC) is the most promising one due to its easier fabrication, improved performance and relatively high power density. In planar SOFCs and other solid-electrolyte devices, gas-tight seals must be formed along the edges of each cell and between the stack and gas manifolds. Glass and glass-ceramic (GC), in particular alkaline-earth alumino silicate based glasses and GCs, are becoming the most promising materials for gas-tight sealing applications in SOFCs. Besides the development of new glass-based materials, new additional concepts are required to overcome the challenges being faced by the currently existing sealant technology. The present work deals with the development of glasses- and GCs-based materials to be used as a sealants for SOFCs and other electrochemical functional applications. In this pursuit, various glasses and GCs in the field of diopside crystalline materials have been synthesized and characterized by a wide array of techniques. All the glasses were prepared by melt-quenching technique while GCs were produced by sintering of glass powder compacts at the temperature ranges from 800−900 ºC for 1−1000 h. Furthermore, the influence of various ionic substitutions, especially SrO for CaO, and Ln2O3 (Ln=La, Nd, Gd, and Yb), for MgO + SiO2 in Al-containing diopside on the structure, sintering and crystallization behaviour of glasses and properties of resultant GCs has been investigated, in relevance with final application as sealants in SOFC. From the results obtained in the study of diopside-based glasses, a bilayered concept of GC sealant is proposed to overcome the challenges being faced by (SOFCs). The systems designated as Gd−0.3 (in mol%: 20.62MgO−18.05CaO−7.74SrO−46.40SiO2−1.29Al2O3 − 2.04 B2O3−3.87Gd2O3) and Sr−0.3 (in mol%: 24.54 MgO−14.73 CaO−7.36 SrO−0.55 BaO−47.73 SiO2−1.23 Al2O3−1.23 La2O3−1.79 B2O3−0.84 NiO) have been utilized to realize the bi-layer concept. Both GCs exhibit similar thermal properties, while differing in their amorphous fractions, revealed excellent thermal stability along a period of 1,000 h. They also bonded well to the metallic interconnect (Crofer22APU) and 8 mol% yttrium stabilized zirconium (8YSZ) ceramic electrolyte without forming undesirable interfacial layers at the joints of SOFC components and GC. Two separated layers composed of glasses (Gd−0.3 and Sr−0.3) were prepared and deposited onto interconnect materials using a tape casting approach. The bi-layered GC showed good wetting and bonding ability to Crofer22APU plate, suitable thermal expansion coefficient (9.7–11.1 × 10–6 K−1), mechanical reliability, high electrical resistivity, and strong adhesion to the SOFC componets. All these features confirm the good suitability of the investigated bi-layered sealant system for SOFC applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cationic porphyrins have been widely used as photosensitizers (PSs) in the inactivation of microorganisms, both in biofilms and in planktonic forms. However, the application of curcumin, a natural PS, in the inactivation of biofilms, is poorly studied. The objectives of this study were (1) to evaluate and compare the efficiency of a cationic porphyrin tetra (Tetra-Py+-Me) and curcumin in the photodynamic inactivation of biofilms of Pseudomonas spp and the corresponding planktonic form; (2) to evaluate the effect of these PSs in cell adhesion and biofilm maturation. In eradication assays, biofilms of Pseudomonas spp adherent to silicone tubes were subjected to irradiation with white light (180 J cm-2) in presence of different concentrations (5 and 10 μM) of PS. In colonization experiments, solid supports were immersed in cell suspensions, PS was added and the mixture experimental setup was irradiated (864 J cm-2) during the adhesion phase. After transference solid supports to new PS-containing medium, irradiation (2592 J cm-2) was resumed during biofilm maturation. The assays of inactivation of planktonic cells were conducted in cell suspensions added of PS concentrations equivalent to those used in experiments with biofilms. The inactivation of planktonic cells and biofilms (eradication and colonization assays) was assessed by quantification of viable cells after plating in solid medium, at the beginning and at the end of the experiments. The results show that porphyrin Tetra-Py+-Me effectively inactivated planktonic cells (3.7 and 3.0 log) and biofilms of Pseudomonas spp (3.2 and 3.6 log). In colonization assays, the adhesion of cells was attenuated in 2.2 log, and during the maturation phase, a 5.2 log reduction in the concentration of viable cells was observed. Curcumin failed to cause significant inactivation in planktonic cells (0.7 and 0.9 log) and for that reason it was not tested in biofilm eradication assays. In colonization assays, curcumin did not affect the adhesion of cells to the solid support and caused a very modest reduction (1.0 log) in the concentration of viable cells during the maturation phase. The results confirm that the photodynamic inactivation is a promising strategy to control installed biofilms and in preventing colonization. Curcumin, however, does not represent an advantageous alternative to porphyrins in the case of biofilms of Pseudomonas spp.