17 resultados para Estratégia em ambientes turbulentos
Resumo:
The massive adoption of sophisticated mobile devices and applications led to the increase of mobile data in the last decade, which it is expected to continue. This increase of mobile data negatively impacts the network planning and dimension, since core networks are heavy centralized. Mobile operators are investigating atten network architectures that distribute the responsibility of providing connectivity and mobility, in order to improve the network scalability and performance. Moreover, service providers are moving the content servers closer to the user, in order to ensure high availability and performance of content delivery. Besides the e orts to overcome the explosion of mobile data, current mobility management models are heavy centralized to ensure reachability and session continuity to the users connected to the network. Nowadays, deployed architectures have a small number of centralized mobility anchors managing the mobile data and the mobility context of millions of users, which introduces issues related to performance and scalability that require costly network mechanisms. The mobility management needs to be rethought out-of-the box to cope with atten network architectures and distributed content servers closer to the user, which is the purpose of the work developed in this Thesis. The Thesis starts with a characterization of mobility management into well-de ned functional blocks, their interaction and potential grouping. The decentralized mobility management is studied through analytical models and simulations, in which di erent mobility approaches distinctly distribute the mobility management functionalities through the network. The outcome of this study showed that decentralized mobility management brings advantages. Hence, it was proposed a novel distributed and dynamic mobility management approach, which is exhaustively evaluated through analytical models, simulations and testbed experiments. The proposed approach is also integrated with seamless horizontal handover mechanisms, as well as evaluated in vehicular environments. The mobility mechanisms are also speci ed for multihomed scenarios, in order to provide data o oading with IP mobility from cellular to other access networks. In the pursuing of the optimized mobile routing path, a novel network-based strategy for localized mobility is addressed, in which a replication binding system is deployed in the mobility anchors distributed through the access routers and gateways. Finally, we go further in the mobility anchoring subject, presenting a context-aware adaptive IP mobility anchoring model that dynamically assigns the mobility anchors that provide the optimized routing path to a session, based on the user and network context. The integration of dynamic and distributed concepts in the mobility management, such as context-aware adaptive mobility anchoring and dynamic mobility support, allow the optimization of network resources and the improvement of user experience. The overall outcome demonstrates that decentralized mobility management is a promising direction, hence, its ideas should be taken into account by mobile operators in the deployment of future networks.
Resumo:
Bacterial infections are an increasing problem for human health. In fact, an increasing number of infections are caused by bacteria that are resistant to most antibiotics and their combinations. Therefore, the scientific community is currently searching for new solutions to fight bacteria and infectious diseases, without promoting antimicrobial resistance. One of the most promising strategies is the disruption or attenuation of bacterial Quorum Sensing (QS), a refined system that bacteria use to communicate. In a QS event, bacteria produce and release specific small chemicals, signal molecules - autoinducers (AIs) - into the environment. At the same time that bacterial population grows, the concentration of AIs in the bacterial environment increases. When a threshold concentration of AIs is reached, bacterial cells respond to it by altering their gene expression profile. AIs regulate gene expression as a function of cell population density. Phenotypes mediated by QS (QSphenotypes) include virulence factors, toxin production, antibiotic resistance and biofilm formation. In this work, two polymeric materials (linear polymers and molecularly imprinted nanoparticles) were developed and their ability to attenuate QS was evaluated. Both types of polymers should to be able to adsorb bacterial signal molecules, limiting their availability in the extracellular environment, with expected disruption of QS. Linear polymers were composed by one of two monomers (itaconic acid and methacrylic acid), which are known to possess strong interactions with the bacterial signal molecules. Molecularly imprinted polymer nanoparticles (MIP NPs) are particles with recognition capabilities for the analyte of interest. This ability is attained by including the target analyte at the synthesis stage. Vibrio fischeri and Aeromonas hydrophila were used as model species for the study. Both the linear polymers and MIP NPs, tested free in solutions and coated to surfaces, showed ability to disrupt QS by decreasing bioluminescence of V. fischeri and biofilm formation of A. hydrophila. No significant effect on bacterial growth was detected. The cytotoxicity of the two types of polymers to a fibroblast-like cell line (Vero cells) was also tested in order to evaluate their safety. The results showed that both the linear polymers and MIP NPs were not cytotoxic in the testing conditions. In conclusion, the results reported in this thesis, show that the polymers developed are a promising strategy to disrupt QS and reduce bacterial infection and resistance. In addition, due to their low toxicity, solubility and easy integration by surface coating, the polymers have potential for applications in scenarios where bacterial infection is a problem: medicine, pharmaceutical, food industry and in agriculture or aquaculture.