18 resultados para Dentadura completa


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ionic liquids are a class of solvents that, due to their unique properties, have been proposed in the past few years as alternatives to some hazardous volatile organic compounds. They are already used by industry, where it was possible to improve different processes by the incorporation of this kind of non-volatile and often liquid solvents. However, even if ionic liquids cannot contribute to air pollution, due to their negligible vapour pressures, they can be dispersed thorough aquatic streams thus contaminating the environment. Therefore, the main goals of this work are to study the mutual solubilities between water and different ionic liquids in order to infer on their environmental impact, and to propose effective methods to remove and, whenever possible, recover ionic liquids from aqueous media. The liquid-liquid phase behaviour of different ionic liquids and water was evaluated in the temperature range between (288.15 and 318.15) K. For higher melting temperature ionic liquids a narrower temperature range was studied. The gathered data allowed a deep understanding on the structural effects of the ionic liquid, namely the cation core, isomerism, symmetry, cation alkyl chain length and the anion nature through their mutual solubilities (saturation values) with water. The experimental data were also supported by the COnductor-like Screening MOdel for Real Solvents (COSMO-RS), and for some more specific systems, molecular dynamics simulations were also employed for a better comprehension of these systems at a molecular level. On the other hand, in order to remove and recover ionic liquids from aqueous solutions, two different methods were studied: one based on aqueous biphasic systems, that allowed an almost complete recovery of hydrophilic ionic liquids (those completely miscible with water at temperatures close to room temperature) by the addition of strong salting-out agents (Al2(SO4)3 or AlK(SO4)2); and the other based on the adsorption of several ionic liquids onto commercial activated carbon. The first approach, in addition to allowing the removal of ionic liquids from aqueous solutions, also makes possible to recover the ionic liquid and to recycle the remaining solution. In the adsorption process, only the removal of the ionic liquid from aqueous solutions was attempted. Nevertheless, a broad understanding of the structural effects of the ionic liquid on the adsorption process was attained, and a final improvement on the adsorption of hydrophilic ionic liquids by the addition of an inorganic salt (Na2SO4) was also achieved. Yet, the development of a recovery process that allows the reuse of the ionic liquid is still required for the development of sustainable processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sismos recentes comprovam a elevada vulnerabilidade dos edifícios existentes de betão armado. A resposta das estruturas aos sismos é fortemente condicionada pelas características da aderência aço-betão, que exibe degradação das propriedades iniciais quando sujeitas a carregamentos cíclicos e alternados. Este fenómeno é ainda mais gravoso para elementos com armadura lisa, predominantes na maioria das estruturas construídas até à década de 70 nos países do sul da Europa. A prática corrente de conceção, dimensionamento e pormenorização das estruturas antigas leva a que tenham características de comportamento e níveis de segurança associados não compatíveis com as exigências atuais. Os estudos realizados sobre o comportamento cíclico de elementos estruturais de betão armado com armadura lisa são ainda insuficientes para a completa caracterização deste tipo de elementos. Esta tese visou a caraterização da relação tensão de aderência versus escorregamento para elementos estruturais com armadura lisa e o estudo da resposta cíclica de pilares e nós viga-pilar de betão armado com armadura lisa. Foram realizados dez séries de ensaios de arrancamento (nove monotónicos e um cíclico) em provetes com varões lisos. Os resultados destes ensaios permitiram propor novas expressões empíricas para a estimativa dos parâmetros usados num modelo disponível na literatura para representação da relação tensão de aderência versus escorregamento. É ainda proposto um novo modelo monotónico para a relação tensão de aderência versus escorregamento que representa melhor a resposta após a resistência máxima de aderência. Uma campanha de ensaios unidirecionais em pilares e nós viga-pilar foi também realizada com o objetivo principal de caracterizar o comportamento cíclico deste tipo de elementos. No total foram realizados oito ensaios em pilares, sete ensaios em nós viga-pilar interiores e seis ensaios em nós viga-pilar exteriores representativos de estruturas antigas de betão armado com armadura lisa. Os resultados experimentais permitiram avaliar a influência do escorregamento e estudar o mecanismo de corte em nós e a evolução dos danos para elementos com armadura lisa. Com base nos resultados experimentais foi proposta uma adaptação na expressão do Eurocódigo 8-3 para o cálculo da capacidade última de rotação de elementos com armadura lisa. Foi também desenvolvido um estudo paramétrico, com diferentes estratégias de modelação não linear, para a simulação da resposta de pilares considerando o escorregamento da armadura lisa. Por último, foi proposto um novo modelo simplificado trilinear para o aço que contempla o efeito do escorregamento da armadura lisa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main objective of the present work is the study of a profitable process not only in the extraction and selective separation of lycopene and β-carotene, two compounds present in tomato, but also in its potential application to food industry wastes. This is one of the industries that produce larger amounts of wastes, which are rich in high value biomolecules with great economic interest. However, the conventional methods used to extract this kind of compounds are expensive which limits their application at large scale. Lycopene and βcarotene are carotenoids with high commercial value, known for their antioxidant activity and benefits to human health. Their biggest source is tomato, one of the world’s most consumed fruits, reason for which large quantities of waste is produced. This work focuses on the study of diverse solvents with a high potential to extract carotenoids from tomato, as well as the search for more environmentally benign solvents than those currently used to extract lycopene and β-carotene from biomass. Additionally, special attention was paid to the creation of a continuous process that would allow the fractionation of the compounds for further purification. Thus, the present work started with the extraction of both carotenoids using a wide range of solvents, namely, organic solvents, conventional salts, ionic liquids, polymers and surfactants. In this stage, each solvent was evaluated in what regards their capacity of extraction as well as their penetration ability in biomass. The results collected showed that an adequate selection of the solvents may lead to the complete extraction of both carotenoids in one single step, particularly acetone and tetrahydrofuran were the most effective ones. However, the general low penetration capacity of salts, ionic liquids, polymers and surfactants makes these solvents ineffective in the solid-liquid extraction process. As the organic solvents showed the highest capacity to extract lycopene and βcarotene, in particular tetrahydrofuran and acetone, the latter solvent used in the development process of fractionation, using to this by strategic use of solvents. This step was only successfully developed through the manipulation of the solubility of each compound in ethanol and n-hexane. The results confirmed the possibility of fractionating the target compounds using the correct addition order of the solvents. Approximately, 39 % of the β-carotene was dissolved in ethanol and about 64 % of lycopene was dissolved in n-hexane, thus indicating their separation for two different solvents which shows the selective character of the developed process without any prior stage optimization. This study revealed that the use of organic solvents leads to selective extraction of lycopene and β-carotene, allowing diminishing the numerous stages involved in conventional methods. At the end, it was possible to idealize a sustainable and of high industrial relevance integrated process, nevertheless existing the need for additional optimization studies in the future.