16 resultados para Bases de Dados Bibliográficas
Resumo:
The lamina-associated polypeptide 1 (LAP1) is a type II transmembrane protein of the inner nuclear membrane encoded by the human gene TOR1AIP1. LAP1 is involved in maintaining the nuclear envelope structure and appears be involved in the positioning of lamins and chromatin. In the nuclear envelope, LAP1 is suggested to exist as a complex with A-type and B-type lamins, torsins and emerin. The presence of such complexes suggests that LAP1 may cooperate functionally with these proteins in tissues where they play a critical role. Therefore, the identification of LAP1 binding partners and the signalling pathways where LAP1 participates, is crucial for a better understanding of LAP1 functions. The work described in this thesis addresses novel human LAP1 associated proteins found through bioinformatic tools. Public databases allowed for the discovery of the LAP1 interactome, which was manually curated, identifying several functionally relevant proteins. Subsequently, the integration of multiple bioinformatic tools established novel functions to LAP1 such as DNA damage response and telomere association. In conjunction, bioinformatic results also reinforced the association of LAP1 with mitosis, and the already identified role of LAP1 in nuclear morphology. Interestingly, this association of LAP1 with the regulation of the nuclear envelope structure and mitosis progression, shares functional elements with spermatogenesis. Therefore, this work additionally described the localization of LAP1 and some of its interactors throughout the spermatogenic cycle, in mouse and human testis. The results established that the activity of LAP1 during the mouse spermatogenic cycle is most evident from stage VIII until the end of spermiogenesis, which is characteristic of manchette development. Concomitantly, some LAP1 interactors studied in this work share a similar localization, namely, PP1γ2, Lamin B1 and Lamin A/C. The results obtained from the study of LAP1 throughout different periods of the male reproductive system attributed potential new biological functions to LAP1. Thereby, this work can be the foundation of future studies regarding LAP1 and the regulation of multiple cellular processes and disease conditions.