17 resultados para 16S tRNA


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although the genetic code is generally viewed as immutable, alterations to its standard form occur in the three domains of life. A remarkable alteration to the standard genetic code occurs in many fungi of the Saccharomycotina CTG clade where the Leucine CUG codon has been reassigned to Serine by a novel transfer RNA (Ser-tRNACAG). The host laboratory made a major breakthrough by reversing this atypical genetic code alteration in the human pathogen Candida albicans using a combination of tRNA engineering, gene recombination and forced evolution. These results raised the hypothesis that synthetic codon ambiguities combined with experimental evolution may release codons from their frozen state. In this thesis we tested this hypothesis using S. cerevisiae as a model system. We generated ambiguity at specific codons in a two-step approach, involving deletion of tRNA genes followed by expression of non-cognate tRNAs that are able to compensate the deleted tRNA. Driven by the notion that rare codons are more susceptible to reassignment than those that are frequently used, we used two deletion strains where there is no cognate tRNA to decode the rare CUC-Leu codon and AGG-Arg codon. We exploited the vulnerability of the latter by engineering mutant tRNAs that misincorporate Ser at these sites. These recombinant strains were evolved over time using experimental evolution. Although there was a strong negative impact on the growth rate of strains expressing mutant tRNAs at high level, such expression at low level had little effect on cell fitness. We found that not only codon ambiguity, but also destabilization of the endogenous tRNA pool has a strong negative impact in growth rate. After evolution, strains expressing the mutant tRNA at high level recovered significantly in several growth parameters, showing that these strains adapt and exhibit higher tolerance to codon ambiguity. A fluorescent reporter system allowing the monitoring of Ser misincorporation showed that serine was indeed incorporated and possibly codon reassignment was achieved. Beside the overall negative consequences of codon ambiguity, we demonstrated that codons that tolerate the loss of their cognate tRNA can also tolerate high Ser misincorporation. This raises the hypothesis that these codons can be reassigned to standard and eventually to new amino acids for the production of proteins with novel properties, contributing to the field of synthetic biology and biotechnology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Candida albicans is the major fungal pathogen in humans, causing diseases ranging from mild skin infections to severe systemic infections in immunocompromised individuals. The pathogenic nature of this organism is mostly due to its capacity to proliferate in numerous body sites and to its ability to adapt to drastic changes in the environment. Candida albicans exhibit a unique translational system, decoding the leucine-CUG codon ambiguously as leucine (3% of codons) and serine (97%) using a hybrid serine tRNA (tRNACAGSer). This tRNACAGSer is aminoacylated by two aminoacyl tRNA synthetases (aaRSs): leucyl-tRNA synthetase (LeuRS) and seryl-tRNA synthetase (SerRS). Previous studies showed that exposure of C. albicans to macrophages, oxidative, pH stress and antifungals increases Leu misincorporation levels from 3% to 15%, suggesting that C. albicans has the ability to regulate mistranslation levels in response to host defenses, antifungals and environmental stresses. Therefore, the hypothesis tested in this work is that Leu and Ser misincorporation at CUG codons is dependent upon competition between the LeuRS and SerRS for the tRNACAGSer. To test this hypothesis, levels of the SerRS and LeuRS were indirectly quantified under different physiological conditions, using a fluorescent reporter system that measures the activity of the respective promoters. Results suggest that an increase in Leu misincorporation at CUG codons is associated with an increase in LeuRS expression, with levels of SerRS being maintained. In the second part of the work, the objective was to identify putative regulators of SerRS and LeuRS expression. To accomplish this goal, C. albicans strains from a transcription factor knock-out collection were transformed with the fluorescent reporter system and expression of both aaRSs was quantified. Alterations in the LeuRS/SerRS expression of mutant strains compared to wild type strain allowed the identification of 5 transcription factors as possible regulators of expression of LeuRS and SerRS: ASH1, HAP2, HAP3, RTG3 and STB5. Globally, this work provides the first step to elucidate the molecular mechanism of regulation of mistranslation in C. albicans.