2 resultados para weighted finite difference approximation scheme
Resumo:
The goal of this work is to present an efficient CAD-based adjoint process chain for calculating parametric sensitivities (derivatives of the objective function with respect to the CAD parameters) in timescales acceptable for industrial design processes. The idea is based on linking parametric design velocities (geometric sensitivities computed from the CAD model) with adjoint surface sensitivities. A CAD-based design velocity computation method has been implemented based on distances between discrete representations of perturbed geometries. This approach differs from other methods due to the fact that it works with existing commercial CAD packages (unlike most analytical approaches) and it can cope with the changes in CAD model topology and face labeling. Use of the proposed method allows computation of parametric sensitivities using adjoint data at a computational cost which scales with the number of objective functions being considered, while it is essentially independent of the number of design variables. The gradient computation is demonstrated on test cases for a Nozzle Guide Vane (NGV) model and a Turbine Rotor Blade model. The results are validated against finite difference values and good agreement is shown. This gradient information can be passed to an optimization algorithm, which will use it to update the CAD model parameters.
Resumo:
The bond formation between an oxide surface and oxygen, which is of importance for numerous surface reactions including catalytic reactions, is investigated within the framework of hybrid density functional theory that includes nonlocal Fock exchange. We show that there exists a linear correlation between the adsorption energies of oxygen on LaMO3 (M = Sc–Cu) surfaces obtained using a hybrid functional (e.g., Heyd–Scuseria–Ernzerhof) and those obtained using a semilocal density functional (e.g., Perdew–Burke–Ernzerhof) through the magnetic properties of the bulk phase as determined with a hybrid functional. The energetics of the spin-polarized surfaces follows the same trend as corresponding bulk systems, which can be treated at a much lower computational cost. The difference in adsorption energy due to magnetism is linearly correlated to the magnetization energy of bulk, that is, the energy difference between the spin-polarized and the non-spin-polarized solutions. Hence, one can estimate the correction ...