11 resultados para uptake mechanisms
Resumo:
Rice is a major source of inorganic arsenic (iAs) in the human diet because paddy rice. efficient at accumulating As Rice As speciation is dominated by iAs and dimethylarsinic acid (DMA). Here we review the global pattern in rice As speciation and the factors causing the variation. Rice produced in Asia shows a strong linear relationship between iAs and total As concentration with a slope of 0.78. Rice produced in Europe and the United States shows a more variable, but generally hyperbolic relationship with DMA being predominant in U.S. rice. Although there is significant genotypic variation in grain As speciation, the regional Variations are primarily attributed to environmental factors. Emerging evidence also indicates that methylated. As species in rice are derived from the soil, while rice plants lack the As methylation ability. Soil flooding and additions of organic matter increase microbial methylation of As, although the microbial community responsible for methylafion is poorly understood. Compared with iAs, methylated As species are taken up by rice roots less efficiently but are transported to the grain much, more efficiently, which may be an important factor responsible for the spikelet sterility disorder (straight head disease) in rice. DMA is a weak carcinogen, but the level of ingestion from rice consumption is much lower than that of concern. Questions that require further investigations are identified.
Resumo:
Nitrate and phosphate uptake mechanisms have been characterised under conditions of 100 and 50% seawater in 3 common brown algae of NW Europe: Fucus vesiculosus, F. serratus and Laminaria digitata. Under low salinity, the growth rate and internal nitrate accumulation of F. serratus significantly increased (20 and 48%, respectively), but no significant changes were observed for F. vesiculosus and L. digitata. However, nitrate uptake rates were reduced in L. digitata, so that this species was less adaptable to low salinity than the Fucus species. Both F. vesiculosus and F. serratus reached a steady-state uptake rate after acclimation regardless of the salinity treatment. All 3 species had a high capacity for storing inorganic N and P intracellularly. The results for F. serratus pointed to a dual mechanism of adaptation to the special characteristics of the intertidal environment where it grows. Non-saturating (low affinity) nitrate uptake and biphasic (double Michaelis-Menten curve) phosphate uptake are adaptations to high nutrient concentrations. Temporal partition of cellular energy for carbon metabolism and nutrient uptake is also suggested as an adaptation to the transient nutrient inputs occurring in these environments.
Resumo:
In Holcus lanatus L. phosphate and arsenate are taken up by the same transport system. Short-term uptake kinetics of the high affinity arsenate transport system were determined in excised roots of arsenate-tolerant and non-tolerant genotypes. In tolerant plants the Vmax of ion uptake in plants grown in phosphate-free media was decreased compared to non-tolerant plants, and the affinity of the uptake system was lower than in the non-tolerant plants. Both the reduction in Vmax and the increase in Km led to reduced arsenate influx into tolerant roots. When the two genotypes were grown in nutrient solution containing high levels of phosphate, there was little change in the uptake kinetics in tolerant plants. In non-tolerant plants, however, there was a marked decrease in the Vmax to the level of the tolerant plants but with little change in the Km. This suggests that the low rate of arsenate uptake over a wide range of differing root phosphate status is due to loss of induction of the synthesis of the arsenate (phosphate) carrier. © 1992 Oxford University Press.
Resumo:
Here the mechanism of arsenite transport into paddy rice (Oryza sativa) roots, uptake of which is described by Michaelis-Menten kinetics, is reported. A recent study on yeast (Saccharomyces cerevisiae) showed that undissociated arsenite (its pKa is 9.2) was transported across the plasma membrane via a glycerol transporting channel. To investigate whether the same mechanism of transport was involved for rice, competitive studies with glycerol, which is transported into cells via aquaporins, were performed. Glycerol competed with arsenite for transport in a dose-dependent manner, indicating that arsenite and glycerol uptake mechanisms were the same. Arsenate transport was unaffected by glycerol, confirming that arsenate and arsenite are taken up into cells by different mechanisms. Antimonite, an arsenite analogue that is transported into S. cerevisiae cells by aquaporins, also competed with arsenite transport in a dose-dependent manner, providing further evidence that arsenite is transported into rice roots via glycerol transporting channels. Mercury (Hg2+) inhibited both arsenite and arsenate uptake, suggesting that inhibition of influx was due to general cellular stress rather than the specific action of Hg2+ on aquaporins. Arsenite uptake by pea (Pisum sativum) and wheat (Triticum aestivum) was also described by Michaelis-Menten kinetics.
Resumo:
The polymorphism of arsenate tolerance in a Holcus lanatus L. population from an uncontaminated soil was investigated and a high percentage of tolerant individuals (65%) was found in the population studied. Influx of arsenate was highly correlated to arsenate tolerance within the population, with the most tolerant individuals having the lowest rates of arsenate influx. Isotherms for the high affinity arsenate uptake systems were determined in six tolerant and six non-tolerant genotypes. Tolerant plants had the lowest rates of arsenate influx. This was achieved by adaptation of the Vmax of arsenate influx with the Vmax of the high affinity uptake system saturating at lower substrate concentrations in the tolerant plants. The polymorphism is discussed with relation to adaptation to the extreme environments to which the plants are subjected on mine-spoil soils. © 1992 Kluwer Academic Publishers.
Resumo:
Arsenic (As) is an environmental and food chain contaminant. Excessive accumulation of As, particularly inorganic arsenic (As(i)), in rice (Oryza sativa) poses a potential health risk to populations with high rice consumption. Rice is efficient at As accumulation owing to flooded paddy cultivation that leads to arsenite mobilization, and the inadvertent yet efficient uptake of arsenite through the silicon transport pathway. Iron, phosphorus, sulfur, and silicon interact strongly with As during its route from soil to plants. Plants take up arsenate through the phosphate transporters, and arsenite and undissociated methylated As species through the nodulin 26-like intrinsic (NIP) aquaporin channels. Arsenate is readily reduced to arsenite in planta, which is detoxified by complexation with thiol-rich peptides such as phytochelatins and/or vacuolar sequestration. A range of mitigation methods, from agronomic measures and plant breeding to genetic modification, may be employed to reduce As uptake by food crops.
Resumo:
The mechanisms of arsenic (As) hyperaccumulation in Pteris vittata, the first identified As hyperaccumulator, are unknown. We investigated the interactions of arsenate and phosphate on the uptake and distribution of As and phosphorus (P), and As speciation in P. vittata. In an 18-d hydroponic experiment with varying concentrations of arsenate and phosphate, P. vittata accumulated As in the fronds up to 27,000 mg As kg(-1) dry weight, and the frond As to root As concentration ratio varied between 1.3 and 6.7. Increasing phosphate supply decreased As uptake markedly, with the effect being greater on root As concentration than on shoot As concentration. Increasing arsenate supply decreased the P concentration in the roots, but not in the fronds. Presence of phosphate in the uptake solution decreased arsenate influx markedly, whereas P starvation for 8 d increased the maximum net influx by 2.5-fold. The rate of arsenite uptake was 10% of that for arsenate in the absence of phosphate. Neither P starvation nor the presence of phosphate affected arsenite uptake. Within 8 h, 50% to 78% of the As taken up was distributed to the fronds, with a higher translocation efficiency for arsenite than for arsenate. In fronds, 49% to 94% of the As was extracted with a phosphate buffer (pH 5.6). Speciation analysis using high-performance liquid chromatography-inductively coupled plasma mass spectroscopy showed that >85% of the extracted As was in the form of arsenite, and the remaining mostly as arsenate. We conclude that arsenate is taken up by P. vittata via the phosphate transporters, reduced to arsenite, and sequestered in the fronds primarily as As(III).
Resumo:
Background and purpose: Galegine and guanidine, originally isolated from Galega officinalis, led to the development of the biguanides. The weight-reducing effects of galegine have not previously been studied and the present investigation was undertaken to determine its mechanism(s) of action.
Experimental approach: Body weight and food intake were examined in mice. Glucose uptake and acetyl-CoA carboxylase activity were studied in 3T3-L1 adipocytes and L6 myotubes and AMP activated protein kinase (AMPK) activity was examined in cell lines. The gene expression of some enzymes involved in fat metabolism was examined in 3T3-L1 adipocytes.
Key results: Galegine administered in the diet reduced body weight in mice. Pair-feeding indicated that at least part of this effect was independent of reduced food intake. In 3T3-L1 adipocytes and L6 myotubes, galegine (50 µm-3 mm) stimulated glucose uptake. Galegine (1–300 µm) also reduced isoprenaline-mediated lipolysis in 3T3-L1 adipocytes and inhibited acetyl-CoA carboxylase activity in 3T3-L1 adipocytes and L6 myotubes. Galegine (500 µm) down-regulated genes concerned with fatty acid synthesis, including fatty acid synthase and its upstream regulator SREBP. Galegine (10 µm and above) produced a concentration-dependent activation of AMP activated protein kinase (AMPK) in H4IIE rat hepatoma, HEK293 human kidney cells, 3T3-L1 adipocytes and L6 myotubes.
Conclusions and implications: Activation of AMPK can explain many of the effects of galegine, including enhanced glucose uptake and inhibition of acetyl-CoA carboxylase. Inhibition of acetyl-CoA carboxylase both inhibits fatty acid synthesis and stimulates fatty acid oxidation, and this may to contribute to the in vivo effect of galegine on body weight.
Resumo:
Selenium (Se) is an essential micronutrient for many organisms, including plants, animals and humans. As plants are the main source of dietary Se, plant Se metabolism is therefore important for Se nutrition of humans and other animals. However, the concentration of Se in plant foods varies between areas, and too much Se can lead to toxicity. As we discuss here, plant Se uptake and metabolism can be exploited for the purposes of developing high-Se crop cultivars and for plant-mediated removal of excess Se from soil or water. Here, we review key developments in the current understanding of Se in higher plants. We also discuss recent advances in the genetic engineering of Se metabolism, particularly for biofortification and phytoremediation of Se-contaminated environments.
Resumo:
Arsenic (As) is an element that is nonessential for and toxic to plants. Arsenic contamination in the environment occurs in many regions, and, depending on environmental factors, its accumulation in food crops may pose a health risk to humans.Recent progress in understanding the mechanisms of As uptake and metabolism in plants is reviewed here. Arsenate is taken up by phosphate transporters. A number of the aquaporin nodulin26-like intrinsic proteins (NIPs) are able to transport arsenite,the predominant form of As in reducing environments. In rice (Oryza sativa), arsenite uptake shares the highly efficient silicon (Si) pathway of entry to root cells and efflux towards the xylem. In root cells arsenate is rapidly reduced to arsenite, which is effluxed to the external medium, complexed by thiol peptides or translocated to shoots. One type of arsenate reductase has been identified, but its in planta functions remain to be investigated. Some fern species in the Pteridaceae family are able to hyperaccumulate As in above-ground tissues. Hyperaccumulation appears to involve enhanced arsenate uptake, decreased arsenite-thiol complexation and arsenite efflux to the external medium, greatly enhanced xylem translocation of arsenite, and vacuolar sequestration of arsenite in fronds. Current knowledge gaps and future research directions are also identified.
Resumo:
Ericoid mycorrhizas are believed to improve N nutrition of many ericaceous plant species that typically occur in habitats with impoverished nutrient status, by releasing amino acids from organic N forms. Despite the ubiquity of mycorrhizal formation the mechanisms and regulation of nutrient transport in mycorrhizal associations are poorly understood. We used an electrophysiological approach to study how amino acid transport characteristics of Calluna vulgaris were affected by colonization with the ericoid mycorrhiza fungus Hymenoscyphus ericae. Both the Vmax and Km parameters of amino acid uptake were affected by fungal colonization in a manner consistent with an increased availability of amino acid to the plant. The ecophysiological significance of altered amino acid transport in colonized root cells of C. vulgaris is discussed. © New Phytologist (2002).