172 resultados para ultraviolet irradiation
Resumo:
This review describes an approach to the prevention of graft-versus-host disease (GVHD) and graft rejection following allogeneic BMT that differs from conventional methods. Ultraviolet (UV) irradiation inhibits the proliferative responses of lymphoid cells to mitogens and alloantigens by inactivation of T lymphocytes and dendritic cells, and in animal models this can prevent both GVHD and graft rejection. It is important that the marrow repopulating capacity of haemopoietic stem cells is not damaged by the irradiation process. We have found that polymorphic microsatellite markers are a sensitive way of assessing the impact of UV irradiation on chimerism after BMT in rodents.
Resumo:
Luminescent ionogels were prepared by doping an europium( III) tetrakis beta-diketonate complex into an imidazolium ionic liquid, followed by immobilization of the ionic liquid by confinement in a silica network. The ionogels were obtained by a non-hydrolytic method as perfect monoliths featuring both the transparency of silica and the ionic conductivity performances of ionic liquids. The ionogels contain 80 vol % of ionic liquid. The organic-inorganic hybrid materials showed a very intense red photoluminescence under ultraviolet irradiation. The red emission has a very high coloric purity.
Resumo:
The objectives of this study were to develop a three-dimensional acellular cartilage matrix (ACM) and investigate its possibility for use as a scaffold in cartilage tissue engineering. Bovine articular cartilage was decellularized sequentially with trypsin, nuclease solution, hypotonic buffer, and Triton x 100 solution; molded with freeze-drying process; and cross-linked by ultraviolet irradiation. Histological and biochemical analysis showed that the ACM was devoid of cells and still maintained the collagen and glycosaminoglycan components of cartilage. Scanning electronic microscopy and mercury intrusion porosimetry showed that the ACM had a sponge-like structure of high porosity. The ACM scaffold had good biocompatibility with cultured rabbit bone marrow mesenchymal stem cells with no indication of cytotoxicity both in contact and in extraction assays. The cartilage defects repair in rabbit knees with the mesenchymal stem cell-ACM constructs had a significant improvement of histological scores when compared to the control groups at 6 and 12 weeks. In summary, the ACM possessed the characteristics that afford it as a potential scaffold for cartilage tissue engineering.
Resumo:
Overexpression of the Bcl-2 proto-oncogene in tumor cells confers resistance against chemotherapeutic drugs. In this study, we describe how the novel pyrrolo-1,5-benzoxazepine compound 7-[[dimethylcarbamoyl]oxy]-6-(2-naphthyl)pyrrolo-[2,1-d] (1,5)-benzoxazepine (PBOX-6) selectively induces apoptosis in Bcl-2-overexpressing cancer cells, whereas it shows no cytotoxic effect on normal peripheral blood mononuclear cells. PBOX-6 overcomes Bcl-2-mediated resistance to apoptosis in chronic myelogenous leukemia (CML) K562 cells by the time- and dose-dependent phosphorylation and inactivation of antiapoptotic Bcl-2 family members Bcl-2 and Bcl-XL. PBOX-6 also induces Bcl-2 phosphorylation and apoptosis in wild-type T leukemia CEM cells and cells overexpressing Bcl-2. This is in contrast to chemotherapeutic agents such as etoposide, actinomycin D, and ultraviolet irradiation, whereby overexpression of Bcl-2 confers resistance against apoptosis. In addition, PBOX-6 induces Bcl-2 phosphorylation and apoptosis in wild-type Jurkat acute lymphoblastic leukemia cells and cells overexpressing Bcl-2. However, Jurkat cells containing a Bcl-2 triple mutant, whereby the principal Bcl-2 phosphorylation sites are mutated to alanine, demonstrate resistance against Bcl-2 phosphorylation and apoptosis. PBOX-6 also induces the early and transient activation of c-Jun NH2-terminal kinase (JNK) in CEM cells. Inhibition of JNK activity prevents Bcl-2 phosphorylation and apoptosis, implicating JNK in the upstream signaling pathway leading to Bcl-2 phosphorylation. Collectively, these findings identify Bcl-2 phosphorylation and inactivation as a critical step in the apoptotic pathway induced by PBOX-6 and highlight its potential as an effective antileukemic agent.
Resumo:
Ultraviolet-B (UVB) irradiation is known to inhibit lymphocyte activity and consequently to reduce the incidence of graft-versus-host disease (GVHD) in experimental models for allogeneic bone marrow transplantation (BMT). GVHD is frequently associated with morbidity and mortality, but also with the beneficial graft-versus-leukemia (GVL) effect, demonstrated by a reduction in the incidence of leukemia relapse. In this study, we investigated whether UVB treatment of allogeneic T cells could prevent GVHD while sparing the beneficial GVL effect following allogeneic BMT in the Brown Norway myelocytic leukemia (BNML) rat model analogous to human acute myelocytic leukemia (AML). The dose of UVB required to abolish lethal GVHD in the rat allogeneic BMT model (WAG/Rij donors into BN recipients) was 4000 J/m2. However, this UVB dose simultaneously abrogated all GVL activity mediated by the T cells in the graft, while the radio-protective capacity of rat BM cells was strongly reduced. The number of allogeneic BM cells required to protect lethally irradiated BN rats was increased 50 to 100-fold. It is concluded that UVB acts as a non-selective form of T cell inactivation, and that UVB pretreatment of an allogeneic marrow graft is unlikely to be useful clinically as a preventive measure for GVHD, since other means of reduction of the number of functional T cells are less damaging to bone marrow stem cells.
Resumo:
We have modeled self-consistently the density and temperature profiles of gas and dust in protoplanetary disks, taking into account irradiation from a central star. Making use of this physical structure, we have calculated the level populations of molecular hydrogen and the line emission from the disks. As a result, we can reproduce the observed strong line spectra of molecular hydrogen from protoplanetary disks, both in the ultraviolet (UV) and the near-infrared, but only if the central star has a strong UV excess radiation.
Resumo:
Ultra-high molecular weight polyethylene (UHMWPE) is used for wear applications in total hip prostheses and total knee prostheses. Sterilisation of these prostheses is commonly by gamma-irradiation. This process creates reactive free radicals in the UHMWPE, greatly increasing its susceptibility to oxidative degradation. This study has investigated the influence of air and vacuum packaging on the properties of gamma-irradiated UHMWPE (GUR1050) following 3 years of shelf ageing. The findings indicate that vacuum packaging minimises oxidative degradation reactions that occur for UHMWPE during shelf ageing. However, gamma-irradiation of vacuum-packaged UHMWPE promotes a degree of cross-linking. It is proposed that this may enhance the wear performance of UHMWPE. Accelerated ageing studies indicate that 3 years of shelf ageing would also seem to reduce the susceptibility of gamma-irradiated UHMWPE to oxidative degradation upon removal from its vacuum packaging.
Resumo:
New R-matrix calculations of electron impact excitation rates in Ca XV are used to derive theoretical electron density diagnostic emission line intensity ratios involving 2s(2)2p(2)- 2s2p(3) transitions, specifically R-1 = I(208.70 Angstrom)/I(200.98 Angstrom), R-2 = I(181.91 Angstrom)/I(200.98 Angstrom), and R-3 = I(215.38 Angstrom)/I(200.98 Angstrom), for a range of electron temperatures (T-e = 10(6.4)-10(6.8) K) and densities (Ne = 10(9)-10(13) cm(-3)) appropriate to solar coronal plasmas. Electron densities deduced from the observed values of R-1, R-2, and R-3 for several solar flares, measured from spectra obtained with the Naval Research Laboratory's S082A spectrograph on board Skylab, are found to be consistent. In addition, the derived electron densities are in excellent agreement with those determined from line ratios in Ca XVI, which is formed at a similar electron temperature to Ca XV. These results provide some experimental verification for the accuracy of the line ratio calculations, and hence the atomic data on which they are based. A set of eight theoretical Ca XV line ratios involving 2s(2)2p(2)-2s2p(3) transitions in the wavelength range similar to140-216 Angstrom are also found to be in good agreement with those measured from spectra of the TEXT tokamak plasma, for which the electron temperature and density have been independently determined. This provides additional support for the accuracy of the theoretical line ratios and atomic data.