2 resultados para two-dimensional principal component analysis (2DPCA)
Resumo:
Gate-tunable two-dimensional (2D) materials-based quantum capacitors (QCs) and van der Waals heterostructures involve tuning transport or optoelectronic characteristics by the field effect. Recent studies have attributed the observed gate-tunable characteristics to the change of the Fermi level in the first 2D layer adjacent to the dielectrics, whereas the penetration of the field effect through the one-molecule-thick material is often ignored or oversimplified. Here, we present a multiscale theoretical approach that combines first-principles electronic structure calculations and the Poisson–Boltzmann equation methods to model penetration of the field effect through graphene in a metal–oxide–graphene–semiconductor (MOGS) QC, including quantifying the degree of “transparency” for graphene two-dimensional electron gas (2DEG) to an electric displacement field. We find that the space charge density in the semiconductor layer can be modulated by gating in a nonlinear manner, forming an accumulation or inversion layer at the semiconductor/graphene interface. The degree of transparency is determined by the combined effect of graphene quantum capacitance and the semiconductor capacitance, which allows us to predict the ranking for a variety of monolayer 2D materials according to their transparency to an electric displacement field as follows: graphene > silicene > germanene > WS2 > WTe2 > WSe2 > MoS2 > phosphorene > MoSe2 > MoTe2, when the majority carrier is electron. Our findings reveal a general picture of operation modes and design rules for the 2D-materials-based QCs.
Resumo:
We formally compare fundamental factor and latent factor approaches to oil price modelling. Fundamental modelling has a long history in seeking to understand oil price movements, while latent factor modelling has a more recent and limited history, but has gained popularity in other financial markets. The two approaches, though competing, have not formally been compared as to effectiveness. For a range of short- medium- and long-dated WTI oil futures we test a recently proposed five-factor fundamental model and a Principal Component Analysis latent factor model. Our findings demonstrate that there is no discernible difference between the two techniques in a dynamic setting. We conclude that this infers some advantages in adopting the latent factor approach due to the difficulty in determining a well specified fundamental model.