5 resultados para two independent measurements
Resumo:
SYSTEMATIC REVIEW AND META-ANALYSIS: EFFECTS OF WALKING EXERCISE IN CHRONIC MUSCULOSKELETAL PAIN O'Connor S.R.1, Tully M.A.2, Ryan B.3, Baxter D.G.3, Bradley J.M.1, McDonough S.M.11University of Ulster, Health & Rehabilitation Sciences Research Institute, Newtownabbey, United Kingdom, 2Queen's University, UKCRC Centre of Excellence for Public Health (NI), Belfast, United Kingdom, 3University of Otago, Centre for Physiotherapy Research, Dunedin, New ZealandPurpose: To examine the effects of walking exercise on pain and self-reported function in adults with chronic musculoskeletal pain.Relevance: Chronic musculoskeletal pain is a major cause of morbidity, exerting a substantial influence on long-term health status and overall quality of life. Current treatment recommendations advocate various aerobic exercise interventions for such conditions. Walking may represent an ideal form of exercise due to its relatively low impact. However, there is currently limited evidence for its effectiveness.Participants: Not applicable.Methods: A comprehensive search strategy was undertaken by two independent reviewers according to the preferred reporting items for systematic reviews and meta-analyses (PRISMA) and the recommendations of the Cochrane Musculoskeletal Review Group. Six electronic databases (Medline, CINAHL, PsychINFO, PEDro, Sport DISCUS and the Cochrane Central Register of Controlled Trials) were searched for relevant papers published up to January 2010 using MeSH terms. All randomised or non-randomised studies published in full were considered for inclusion. Studies were required to include adults aged 18 years or over with a diagnosis of chronic low back pain, osteoarthritis or fibromyalgia. Studies were excluded if they involved peri-operative or post-operative interventions or did not include a comparative, non exercise or non-walking exercise control group. The U.S. Preventative Services Task Force system was used to assess methodological quality. Data for pain and self-reported function were extracted and converted to a score out of 100.Analysis: Data were pooled and analyzed using RevMan (v.5.0.24). Statistical heterogeneity was assessed using the X2 and I2 test statistics. A random effects model was used to calculate the mean differences and 95% CIs. Data were analyzed by length of final follow-up which was categorized as short (≤8 weeks post randomisation), mid (2-12 months) or long-term (>12 months).Results: A total of 4324 articles were identified and twenty studies (1852 participants) meeting the inclusion criteria were included in the review. Overall, studies were judged to be of at least fair methodological quality. The most common sources of likely bias were identified as lack of concealed allocation and failure to adequately address incomplete data. Data from 12 studies were suitable for meta-analysis. Walking led to reductions in pain at short (<8 weeks post randomisation) (-8.44 [-14.54, -2.33]) and mid-term (>8 weeks - 12 month) follow-up (-9.28 [-16.34, -2.22]). No effect was observed for long-term (>12 month) data (-2.49 [-7.62, 2.65]). For function, between group differences were observed for short (-11.57 [-16.06, -7.08]) and mid-term data (-13.26 [-16.91, -9.62]). A smaller effect was also observed at long-term follow-up (-5.60 [-7.70, -3.50]).Conclusions: Walking interventions were associated with statistically significant improvements in pain and function at short and mid-term follow-up. Long-term data were limited but indicated that these effects do not appear to be maintained beyond twelve months.Implications: Walking may be an effective form of exercise for individuals with chronic musculoskeletal pain. However, further research is required which examines longer term follow-up and dose-response issues in this population.Key-words: 1. Walking exercise 2. Musculoskeletal pain 3. Systematic reviewFunding acknowledgements: Department of Employment and Learning, Northern Ireland.Ethics approval: Not applicable.
Resumo:
PURPOSE: Myeloma is a clonal malignancy of plasma cells. Poor-prognosis risk is currently identified by clinical and cytogenetic features. However, these indicators do not capture all prognostic information. Gene expression analysis can be used to identify poor-prognosis patients and this can be improved by combination with information about DNA-level changes. EXPERIMENTAL DESIGN: Using single nucleotide polymorphism-based gene mapping in combination with global gene expression analysis, we have identified homozygous deletions in genes and networks that are relevant to myeloma pathogenesis and outcome. RESULTS: We identified 170 genes with homozygous deletions and corresponding loss of expression. Deletion within the "cell death" network was overrepresented and cases with these deletions had impaired overall survival. From further analysis of these events, we have generated an expression-based signature associated with shorter survival in 258 patients and confirmed this signature in data from two independent groups totaling 800 patients. We defined a gene expression signature of 97 cell death genes that reflects prognosis and confirmed this in two independent data sets. CONCLUSIONS: We developed a simple 6-gene expression signature from the 97-gene signature that can be used to identify poor-prognosis myeloma in the clinical environment. This signature could form the basis of future trials aimed at improving the outcome of poor-prognosis myeloma.
Resumo:
Epitaxial heterostructures combining ferroelectric (FE) and ferromagnetic (FiM) oxides are a possible route to explore coupling mechanisms between the two independent order parameters, polarization and magnetization of the component phases. We report on the fabrication and properties of arrays of hybrid epitaxial nanostructures of FiM NiFe(2)O(4) (NFO) and FE PbZr(0.52)Ti(0.48)O(3) or PbZr(0.2)Ti(0.8)O(3), with large range order and lateral dimensions from 200 nm to 1 micron. METHODS: The structures were fabricated by pulsed-laser deposition. High resolution transmission electron microscopy and high angle annular dark-field scanning transmission electron microscopy were employed to investigate the microstructure and the epitaxial growth of the structures. Room temperature ferroelectric and ferrimagnetic domains of the heterostructures were imaged by piezoresponse force microscopy (PFM) and magnetic force microscopy (MFM), respectively. RESULTS: PFM and MFM investigations proved that the hybrid epitaxial nanostructures show ferroelectric and magnetic order at room temperature. Dielectric effects occurring after repeated switching of the polarization in large planar capacitors, comprising ferrimagnetic NiFe2O4 dots embedded in ferroelectric PbZr0.52Ti0.48O3 matrix, were studied. CONCLUSION: These hybrid multiferroic structures with clean and well defined epitaxial interfaces hold promise for reliable investigations of magnetoelectric coupling between the ferrimagnetic / magnetostrictive and ferroelectric / piezoelectric phases.
Resumo:
Genome-wide association studies (GWAS) have identified several risk variants for late-onset Alzheimer's disease (LOAD)1, 2. These common variants have replicable but small effects on LOAD risk and generally do not have obvious functional effects. Low-frequency coding variants, not detected by GWAS, are predicted to include functional variants with larger effects on risk. To identify low-frequency coding variants with large effects on LOAD risk, we carried out whole-exome sequencing (WES) in 14 large LOAD families and follow-up analyses of the candidate variants in several large LOAD case–control data sets. A rare variant in PLD3 (phospholipase D3; Val232Met) segregated with disease status in two independent families and doubled risk for Alzheimer’s disease in seven independent case–control series with a total of more than 11,000 cases and controls of European descent. Gene-based burden analyses in 4,387 cases and controls of European descent and 302 African American cases and controls, with complete sequence data for PLD3, reveal that several variants in this gene increase risk for Alzheimer’s disease in both populations. PLD3 is highly expressed in brain regions that are vulnerable to Alzheimer’s disease pathology, including hippocampus and cortex, and is expressed at significantly lower levels in neurons from Alzheimer’s disease brains compared to control brains. Overexpression of PLD3 leads to a significant decrease in intracellular amyloid-β precursor protein (APP) and extracellular Aβ42 and Aβ40 (the 42- and 40-residue isoforms of the amyloid-β peptide), and knockdown of PLD3 leads to a significant increase in extracellular Aβ42 and Aβ40. Together, our genetic and functional data indicate that carriers of PLD3 coding variants have a twofold increased risk for LOAD and that PLD3 influences APP processing. This study provides an example of how densely affected families may help to identify rare variants with large effects on risk for disease or other complex traits.
Resumo:
Two independent regions within HNF1B are consistently identified in prostate and ovarian cancer genome-wide association studies (GWAS); their functional roles are unclear. We link prostate cancer (PC) risk SNPs rs11649743 and rs3760511 with elevated HNF1B gene expression and allele-specific epigenetic silencing, and outline a mechanism by which common risk variants could effect functional changes that increase disease risk: functional assays suggest that HNF1B is a pro-differentiation factor that suppresses epithelial-to-mesenchymal transition (EMT) in unmethylated, healthy tissues. This tumor-suppressor activity is lost when HNF1B is silenced by promoter methylation in the progression to PC. Epigenetic inactivation of HNF1B in ovarian cancer also associates with known risk SNPs, with a similar impact on EMT. This represents one of the first comprehensive studies into the pleiotropic role of a GWAS-associated transcription factor across distinct cancer types, and is the first to describe a conserved role for a multi-cancer genetic risk factor.