34 resultados para traps
Resumo:
We test the view that the large differences in income levels we see across the world are due to differences in the intrinsic geography of each country against the alternative view that there are poverty traps. We reject simple geographic determinism in favor of a poverty trap model with high- and low-level equilibria. The high-level equilibrium state is found to be the same for all countries while income in the low-level equilibrium, and the probability of being in the high-level equilibrium, are greater in cool, coastal countries with high, year-round, rainfall.
Resumo:
The sulfur tolerance of a barium-containing NOx storage/reduction trap was investigated using infrared analysis. It was confirmed that barium carbonate could be replaced by barium sulfate by reaction with low concentrations of sulfur dioxide (50 ppm) in the presence of large concentrations of carbon dioxide (10%) at temperatures up to 700 degreesC. These sulfates could at least be partially removed by switching to hydrogen-rich conditions at elevated temperatures. Thermodynamic calculations were used to evaluate the effects of gas composition and temperature on the various reactions of barium sulfate and carbonate under oxidizing and reducing conditions. These calculations clearly showed that if, under a hydrogen-rich atmosphere, carbon dioxide is included as a reactant and barium carbonate as a product then barium sulfate can be removed by reaction with carbon dioxide at a much lower temperature than is possible by decomposition to barium oxide. It was also found that if hydrogen sulfide was included as a product of decomposition of barium sulfate instead of sulfur dioxide then the temperature of reaction could be significantly lowered. Similar calculations were conducted using a selection of other alkaline-earth and alkali metals. In this case calculations were simulated in a gas mixture containing carbon monoxide, hydrogen and carbon dioxide with partial pressures similar to those encountered in real exhausts during switches to rich conditions. The results indicated that there are metals such as lithium and strontium with less stable sulfates than barium, which may also possess sufficient NOx storage capacity to give sulfur-tolerant NOx traps.
Resumo:
This paper presents the basic physics underlying the operation of electron beam ion traps and sources, with the machine physics underlying their operation being described in some detail. Predictions arising from this description are compared with some diagnostic measurements.
Resumo:
Experimental assessments of the modified power-combining Class-E amplifier are described. The technique used to combine the output of individual power amplifiers (PAs) into an unbalanced load without the need for bulky transformers permits the use of small RF chokes useful for the deployment in the EER transmitter. The modified output load network of the PA results in excellent 50 dBc and 46 dBc second and third-harmonic suppressions, dispensing the need for additional lossy filtering block. Operating from a 3.2 V dc supply voltage, the PA exhibits 64% drain efficiency at 24 dBm output power. Over a wide bandwidth of 350 MHz, drain efficiency of better than 60% at output power higher than 22 dBm were achieved. © 2010 IEICE Institute of Electronics Informati.
Resumo:
We present ab initio quantum chemistry calculations for elastic scattering and the radiative charge transfer reaction process and collision rates for trapped ytterbium ions immersed in a quantum degenerate rubidium vapor.
The collision of the ion (or ions) with the quasiatom is the key mechanism to transfer quantum coherences between the systems. We use first-principles
quantum chemistry codes to obtain the potential surfaces and coupling terms for the two-body interaction of Yb^+ with Rb. We find that the low energy collision has an inelastic radiative charge transfer process in agreement with recent experiments.
The charge transfer cross section agrees well with the semiclassical Langevin model at higher energies but is dominated by resonances at submillikelvin temperatures.
Resumo:
Ultracold hybrid ion–atom traps offer the possibility of microscopic manipulation of quantum coherences in the gas using the ion as a probe. However, inelastic processes, particularly charge transfer can be a significant process of ion loss and has been measured experimentally for the ${\rm Y}{{{\rm b}}^{+}}$ ion immersed in a Rb vapour. We use first-principles quantum chemistry codes to obtain the potential energy curves and dipole moments for the lowest-lying energy states of this complex. Calculations for the radiative decay processes cross sections and rate coefficients are presented for the total decay processes; ${\rm Y}{{{\rm b}}^{+}}(6{\rm s}{{\;}^{2}}{\rm S})+{\rm Rb}(5{\rm s}{{\;}^{2}}{\rm S})\to {\rm Yb}(6{{{\rm s}}^{2}}{{\;}^{1}}{\rm S})+{\rm R}{{{\rm b}}^{+}}(4{{{\rm p}}^{6}}{{\;}^{1}}{\rm S})+h\nu $ and ${\rm Y}{{{\rm b}}^{+}}(6{\rm s}{{\;}^{2}}{\rm S})+{\rm Rb}(5{\rm s}{{\;}^{2}}{\rm S})\to {\rm YbR}{{{\rm b}}^{+}}({{X}^{1}}{{\Sigma }^{+}})+h\nu $. Comparing the semi-classical Langevin approximation with the quantum approach, we find it provides a very good estimate of the background at higher energies. The results demonstrate that radiative decay mechanisms are important over the energy and temperature region considered. In fact, the Langevin process of ion–atom collisions dominates cold ion–atom collisions. For spin-dependent processes [1] the anisotropic magnetic dipole–dipole interaction and the second-order spin–orbit coupling can play important roles, inducing coupling between the spin and the orbital motion. They measured the spin-relaxing collision rate to be approximately five orders of magnitude higher than the charge-exchange collision rate [1]. Regarding the measured radiative charge transfer collision rate, we find that our calculation is in very good agreement with experiment and with previous calculations. Nonetheless, we find no broad resonances features that might underly a strong isotope effect. In conclusion, we find, in agreement with previous theory that the isotope anomaly observed in experiment remains an open question.
Resumo:
The electron beam ions traps (EBITs) are widely used to study highly charged ions (HCIs). In an EBIT, a high energy electron beam collides with atoms and ions to generate HCIs in the trap region. It is important to study the physics in the trap. The atomic processes, such as electron impact ionisation (EI), radiative recombination (RR), dielectronic recombination (DR) and charge exchange (CX), occur in the trap and numerical simulation can give some parameters for design, predict the composition and describe charge state evolution in an EBIT [Phys. Rev. A 43 (199 1) 4861]. We are presently developing a new code, which additionally includes a description of the overlaps between the ion clouds of the various charge-states. It has been written so that it can simulate experiments where various machine parameters (e.g. beam energy and current) can vary throughout the simulation and will be able to use cross- sections either based on scaling laws or derived from atomic structure calculations. An object-oriented method is used in developing the new software, which is an efficient way to organize and write code. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
The two-electron QED contributions to the ground-state binding energy of Kr34+ ions have been determined in two independent experiments performed with electron beam ion traps (EBIT) in Heidelberg (HD) and Tokyo (BT, Belfast-Tokyo collaboration). X rays arising from radiative recombination (RR) of free electrons to the ground state of initially bare Kr36+ and hydrogenlike Kr35+ ions were observed as a function of the interacting electron energy. The K edge absorption by thin Eu and W foils provided fixed photon energy references used to measure the difference in binding energy Delta E-2e between the H- and He-like Kr ions (Kr35+ and Kr34+, respectively). The two values agree well, yielding a final result of Delta E-2e=641.8 +/- 1.7 eV, confirming recent results of rigorous QED calculations. This accuracy is just of the order required to access screened radiative QED contributions.
Resumo:
Aim Determination of the main directions of variance in an extensive data base of annual pollen deposition, and the relationship between pollen data from modified Tauber traps and palaeoecological data. Location Northern Finland and Norway. Methods Pollen analysis of annual samples from pollen traps and contiguous high-resolution samples from a peat sequence. Numerical analysis (principal components analysis) of the resulting data. Results The main direction of variation in the trap data is due to the vegetation region in which each trap is located. A secondary direction of variation is due to the annual variability of pollen production of some of the tree taxa, especially Betula and Pinus. This annual variability is more conspicuous in ‘absolute’ data than it is in percentage data which, at this annual resolution, becomes more random. There are systematic differences, with respect to peat-forming taxa, between pollen data from traps and pollen data from a peat profile collected over the same period of time. Main conclusions Annual variability in pollen production is rarely visible in fossil pollen samples because these cannot be sampled at precisely a 12-month resolution. At near-annual resolution sampling, it results in erratic percentage values which do not reflect changes in vegetation. Profiles sampled at near annual resolution are better analysed in terms of pollen accumulation rates with the realization that even these do not record changes in plant abundance but changes in pollen abundance. However, at the coarser temporal resolution common in most fossil samples it does not mask the origin of the pollen in terms of its vegetation region. Climate change may not be recognizable from pollen assemblages until the change has persisted in the same direction sufficiently long enough to alter the flowering (pollen production) pattern of the dominant trees.
Resumo:
Thin film Ba0.5Sr0.5TiO3 (BST) capacitors of thickness similar to75 nm to similar to1200 nm, with Au top electrodes and SrRuO 3 (SRO) or (La, Sr)CoO3 (LSCO) bottom electrodes were fabricated using Pulsed Laser Deposition. Implementing the "series capacitor model," bulk and interfacial capacitance properties were extracted as a function of temperature and frequency. 'Bulk' properties demonstrated typical ceramic behaviour, displaying little frequency dependence and a permittivity and loss peak at 250 K and 150 K respectively. The interfacial component was found to be relatively temperature and frequency independent for the LSCO/BST capacitors, but for the SRO/BST configuration the interfacial capacitance demonstrated moderate frequency and little temperature dependence below T similar to 300 K but a relatively strong frequency and temperature dependence above T similar to3 00 K. This was attributed to the thermal activation of a space charge component combined with a thermally independent background. The activation energy for the space charge was found to be E-A similar to 0.6 eV suggesting de-trapping of electrons from shallow level traps associated with a thin interfacial layer of oxygen vacancies, parallel to the electrodes.