117 resultados para time resolved spectra
Resumo:
Nanosecond time-resolved absorption (TA), resonance Raman (TR(3)), and infrared (TRIR) spectra are reported for several complexes [Ru(X)(R)(CO)(2)(alpha-diimine)] (X = Cl, Br, I; R = Me, Et; alpha-diimine = N,N'-diisopropyl-1,4-diaza-1,3-butadiene (iPr-DAB), pyridine-2-carbaldehyde-N-isopropylimine (iPr-PyCa), 2,2'-bipyridine (bpy)). This is the first instance in which the TA, TR(3), and TRIR techniques have been used to probe excited states in the same series of complexes. The TA spectra of the iodide complexes show a transient absorption between 550 and 700 nm, which does not depend on the solvent but shifts to lower energy in the order iPr-DAB > bpy > iPr-PyCa. This band is assigned to an intraligand transition. For the corresponding chloride and bromide complexes this band occurs at higher energy, most probably because of a change of character of the lowest excited state from XLCT to MLCT. The TRIR spectra show an increase in v(CO) (and k(CO)) on promotion to the excited state; however, the shifts Delta v(CO) show a decrease in the order Cl- > Br- > I-. The TR(3) spectra of the excited complexes [Ru(X)(R)(Co)(2)(iPr-DAB)] show v(s)(CN) of the iPr-DAB ligand 50-80 cm(-1) lower in frequency than for the complexes in their ground state. This frequency shift decreases in the order Cl- > Br- > I-, indicating a decrease of CT character of the lowest excited state in this order. However, going from X = Br to I, the effect on Delta v(CO) is much larger than the decrease of Delta v(s)(CN). This different effect on the CO- and CN-stretching frequencies is assigned to a gradual change in character of the lowest excited state from MLCT to XLCT when Cl- is replaced by Br- and I-. This result confirms a similar conclusion derived from previous resonance Raman and emission experiments on these complexes.
Resumo:
We present a detailed optical study of the ultracompact X-ray binary 4U 0614+091. We have used 63 hr of time-resolved optical photometry taken with three different telescopes (IAC80, NOT, and SPM) to search for optical modulations. The power spectra of each data set reveals sinusoidal modulations with different periods, which are not always present. The strongest modulation has a period of 51.3 minutes, a semiamplitude of 4.6 mmag, and is present in the IAC80 data. The SPM and NOT data show periods of 42 minutes and 64 minutes, respectively, but with much weaker amplitudes, 2.6 mmag and 1.3 mmag, respectively. These modulations arise from either X-ray irradiation of the inner face of the secondary star and/or a superhump modulation from the accretion disk, or quasiperiodic modulations in the accretion disk. It is unclear whether these periods/quasi-periodic modulations are related to the orbital period; however, the strongest period of 51.3 minutes is close to earlier tentative orbital periods. Further observations taken over a long baseline are encouraged.
Resumo:
We present a detailed analysis of time-resolved optical spectra of the ZZ Ceti white dwarf, HS 0507+0434B. Using the wavelength dependence of observed mode amplitudes, we deduce the spherical degree, l, of the modes, most of which have l = 1. The presence of a large number of combination frequencies (linear sums or differences of the real modes) enabled us not only to test theoretical predictions but also to indirectly infer spherical and azimuthal degrees of real modes that had no observed splittings. In addition to the above, we measure line-of-sight velocities from our spectra. We find only marginal evidence for periodic modulation associated with the pulsation modes: at the frequency of the strongest mode in the lightcurve, we measure an amplitude of 2.6 +/- 1.0 kms(-1), which has a probability of 2% of being due to chance; for the other modes, we find lower values. Our velocity amplitudes and upper limits are smaller by a factor of two compared to the amplitudes found in ZZ Psc. We find that this is consistent with expectations based on the position of HS 0507+0434B in the instability strip. Combining all the available information from data such as ours is a first step towards constraining atmospheric properties in a convectionally unstable environment from an observational perspective.
Resumo:
Vibrational Raman spectroscopy is now widely recognized as a useful technique for chemical analysis. It has become increasingly popular for the characterization of stable species since the technology which underpins Raman measurements has matured. Time-resolved Raman spectroscopy has also become established as an excellent method for the characterization of transient chemical species but it is not so widely applied. However, the technical advances which have reduced the cost and increased the reliability of conventional: Raman systems can also be exploited in studies of transient species. In some cases it is just as straightforward to record the Raman-spectra of a short-lived transient species as it is to monitor a more stable sample. This raises the possibility of routinely adding time-domain Raman measurements to more conventional Raman techniques, increasing the selectivity of the analysis while retaining its ability to provide spectral information which is characteristic of the species under investigation.
Resumo:
The first report of time-resolved resonance Raman (TR(3)) scattering in a supercritical fluid is presented. TR(3) spectra of the lowest triplet excited state (T-1) of anthracene in supercritical (SC) CO2 have been obtained over the pressure range 90-500 bar. These data have been complemented by conventional flash photolysis measurements of the excited state lifetime, transient absorbance difference, and fluorescence spectra over a similar pressure range. The spectroscopic data show systematic changes with increasing pressure; the Delta A spectra of the TI state recorded at two different temperatures display a red shift with increasing fluid pressure, which is in agreement with earlier work carried out over a smaller range of pressures. Similar shifts in the fluorescence are also observed. The vibrational frequencies of the T-1 state of anthracene are found to be relatively insensitive to applied pressure; indeed, the transient bands are readily identified by comparison with resonance Raman (RR) spectra of the T-1 state in cyclohexane solution. Small but well-defined shifts to lower cm(-1) with increasing pressure are observed in some of the vibrational bands of SC COE. The most marked change in the excited state Raman spectra is that the intensity of the T-1 anthracene features, relative to those of CO2, increases with applied pressure. The information which each of the above spectroscopic methods gives on the question of how pressure changes affect the structure and local environment of the excited state probe molecule in the SCF is discussed. Possible explanations for the observed increase in RR band intensities in terms of increased resonance Raman enhancement arising from the spectral shifts and/or the increased solubility of anthracene in CO2 with increasing pressure are also considered.
Resumo:
Time-resolved resonance Raman spectroscopy of the lowest energy excited state of the 4,4'-bipyridyl ligand-bridged complex, [(CO)(5)W(L)W(CO5] (1), and Raman spectroscopy of electrochemically reduced 1, both give bands characteristic of the the L(.-) species. This confirms that the ligand L is negatively charged in the lowest energy exicited state which is therefore metal-ligand charge transfer (MLCT) in character. Raman spectra of the radical anion of 1 excited in the far red (800 nm) exhibited a band near 2050 cm(-1) due to a vco symmetric CO stretching mode, compared to the corresponding band at 2070 cm(-1) in the spectrum of the parent, uncharged complex. The lower vco in the reduced complex supports the recent finding by time-resolved IR spectroscopy of a similar frequency decrease for nu(CO) in the longest lived (MLCT) excited state of 1 which was attributed to electron/hole localisation in this state on the IR time scale.
Resumo:
Resonance Raman spectra of the T-1 excited states of Zn and free-base tetra-4-sulfonatophenylporphyrin (TPPS) have been recorded at room temperature in aqueous solution using two-colour time-resolved methods. The spectra of both sulfonated molecules are very similar to their tetraphenylporphyrin (TPP) analogues, which have been recorded in THF solution using the same pump-probe conditions, but they have higher signal-to-noise ratios because interference from strong solvent bands is reduced. Although two different T-1 spectra of Zn(TPP) have been reported these spectra differ slightly from each other and from the spectrum reported here, which has band positions very close (+/-6 cm(-1)) to those of Zn(TPPS). The high S/N ratios obtainable for the water-soluble porphyrins have allowed reliable polarization data to be recorded for their S-0 and T-1 states. This data set allows a realistic comparison of the changes in bonding associated with excitation of both free-base and Zn tetraarylporphyrins to the T-1 state.
Resumo:
Two-color time-resolved resonance Raman spectroscopy has been used to probe the lowest excited singlet (S1) and triplet (T1) states of free-base meso-tetraphenylporphyrin and meso-tetrakis(4-sulphonatophenyl)porphyrin in solution at room temperature. The spectra were recorded using 532-nm excitation pulses and time-delayed probe pulses (DELTAT = 0-30 ns, 447 and 460 nm) near lambda(max) of the S1 and T1 states. Significant shifts in frequency of the porphyrin core vibrations were observed upon excitation to either the S1 or T1 state. Several of the strongest polarized bands in the spectra of both excited states, including nu1, nu2, nu4, nu6, and phi4, are assigned, and the information they give on the differences in electron distribution in the ground, S1, and T1 states is discussed.
Resumo:
Gas temperature is of major importance in plasma based surface treatment, since the surface processes are strongly temperature sensitive. The spatial distribution of reactive species responsible for surface modification is also influenced by the gas temperature. Industrial applications of RF plasma reactors require a high degree of homogeneity of the plasma in contact with the substrate. Reliable measurements of spatially resolved gas temperatures are, therefore, of great importance. The gas temperature can be obtained, e.g. by optical emission spectroscopy (OES). Common methods of OES to obtain gas temperatures from analysis of rotational distributions in excited states do not include the population dynamics influenced by cascading processes from higher electronic states. A model was developed to evaluate this effect on the apparent rotational temperature that is observed. Phase resolved OES confirmed the validity of this model. It was found that cascading leads to higher apparent temperatures, but the deviation (similar or equal to 25 K) is relatively small and can be ignored in most cases. This analysis is applied to investigate axially and radially resolved temperature profiles in an inductively coupled hydrogen RF discharge.
Resumo:
In gas discharges at elevated pressure, radiation-less collisional de-excitation (quenching) has a strong influence on the population of excited states. The knowledge of quenching coefficients is therefore important for plasma diagnostics and simulations. A novel time-resolved optical emission spectroscopic (OES) technique allows the measurement of quenching coefficients for emission lines of various species, particularly of noble gases, with molecular hydrogen as collision partner. The technique exploits the short electron impact excitation during the field reversal phase within the sheath region of a hydrogen capacitively coupled RF discharge at 13.56 MHz. Quenching coefficients can be determined subsequent to this excitation from the effective lifetime of the fluorescence decay at various hydrogen pressures. The measured quenching coefficients agree very well with results obtained by means of laser excitation. The time-resolved OES technique based on electron impact excitation is not limited - in contrast to laser techniques - by optical selection rules and the energy gap between the ground state and the observed excited level.
Resumo:
The formation of nitrogen oxides (NOx) during a combustion process is difficult to avoid because of the large exotherm and the consequent problem of avoiding local high-temperature spikes. Consequently, for many applications, such as for automotive power generation, there will be a continuing need to use catalytic after-treatment to reduce harmful emissions. The investigation of the mechanisms of the key catalytic reactions in environmental catalysis can provide an insight into the action of the catalyst, and time-resolved methods offer a powerful means to study these processes under realistic conditions. The use of Temporal Analysis of Products (TAP) and Steady State Isotopic Transient Kinetic Analysis (SSITKA) methods to investigate the reduction of NOx under various experimental conditions is described. From a detailed analysis of the SSITKA profiles, it is shown that at low temperatures the mechanism for the formation of N-2 and N2O from NO may differ from the conventional high-temperature mechanism. This is supported by density functional theory calculations, which show that the barrier to the formation of N2O from the reaction of N(ads) and NO(ads) may be too high to allow this process to occur at low temperatures. The alternative reaction of NO(ads) + NO(ads) = N2O(g) + O(ads) is shown to be much more favorable and is consistent with the SSITKA analysis. The remarkable effect of hydrogen as a reductant at low temperatures is described, and alternative interpretations of the role of hydrogen are discussed.