10 resultados para thermal entanglement
Resumo:
We study a system of three trapped ions in an anisotropic bidimensional trap. By focusing on the transverse modes of the ions, we show that the mutual ion-ion Coulomb interactions set entanglement of a genuine tripartite nature, to some extent persistent to the thermal nature of the vibronic modes. We tackle this issue by addressing a nonlocality test in the phase space of the ionic system and quantifying the genuine residual tripartite entanglement in the continuous variable state of the transverse modes.
Resumo:
We address the presence of bound entanglement in strongly interacting spin systems at thermal equilibrium. In particular, we consider thermal graph states composed of an arbitrary number of particles. We show that for a certain range of temperatures no entanglement can be extracted by means of local operations and classical communication, even though the system is still entangled. This is found by harnessing the independence of the entanglement in some bipartitions of such states with the system's size. Specific examples for one- and two-dimensional systems are given. Our results thus prove the existence of thermal bound entanglement in an arbitrary large spin system with finite-range local interactions.
Resumo:
Does bound entanglement naturally appear in quantum many-body systems? We address this question by showing the existence of bound-entangled thermal states for harmonic oscillator systems consisting of an arbitrary number of particles. By explicit calculations of the negativity for different partitions, we find a range of temperatures for which no entanglement can be distilled by means of local operations, despite the system being globally entangled. We offer an interpretation of this result in terms of entanglement-area laws, typical of these systems. Finally, we discuss generalizations of this result to other systems, including spin chains.
Resumo:
We study the entanglement distillability properties of thermal states of many-body systems Following the ideas presented in [6, A Ferraro et al., Phys. Rev Lett 100, 080502 (2008)], we first discuss the appearance of bound entanglement in those systems satisfying an entanglement area law Then, we extend these results to other topologies, not necessarily satisfying an entanglement area law We also study whether bound entanglement survives in the macroscopic limit of an infinite number of particles.
Resumo:
Entanglement is an important ingredient for quantum information processing. We discuss some sources of entanglement, namely a beam splitter and a thermal field. For the generation of entangled continuous-variable states, we consider a beam splitter and find some conditions for input fields to see entanglement in the output. While a beam splitter is a unitary device to generate an entangled state for a bipartite continuous-variable system, a thermal field is shown to mediate entanglement of two qubits.
Resumo:
A thermal field, which frequently appears in problems of decoherence, provides us with minimal information about the field. We study the interaction of the thermal field and a quantum system composed of two qubits and find that such a chaotic field with minimal information can nevertheless entangle qubits that are prepared initially in a separable state. This simple model of a quantum register interacting with a noisy environment allows us to understand how memory of the environment affects the state of a quantum register.
Resumo:
A pure state decoheres into a mixed state as it entangles with an environment. When an entangled two-mode system is embedded in a thermal environment, however, each mode may not be entangled with its environment by their simple linear interaction. We consider an exactly solvable model to study the dynamics of a total system, which is composed of an entangled two-mode system and a thermal environment. The Markovian interaction with the environment is concerned with an array of infinite number of beam splitters. It is shown that many-body entanglement of the system and the environment may play a crucial role in the process of disentangling the system.
Resumo:
We address the generation, propagation, and application of multipartite continuous variable entanglement in a noisy environment. In particular, we focus our attention on the multimode entangled states achievable by second-order nonlinear crystals-i.e., coherent states of the SU(m,1) group-which provide a generalization of the twin-beam state of a bipartite system. The full inseparability in the ideal case is shown, whereas thresholds for separability are given for the tripartite case in the presence of noise. We find that entanglement of tripartite states is robust against thermal noise, both in the generation process and during propagation. We then consider coherent states of SU(m,1) as a resource for multipartite distribution of quantum information and analyze a specific protocol for telecloning, proving its optimality in the case of symmetric cloning of pure Gaussian states. We show that the proposed protocol also provides the first example of a completely asymmetric 1 -> m telecloning and derive explicitly the optimal relation among the different fidelities of the m clones. The effect of noise in the various stages of the protocol is taken into account, and the fidelities of the clones are analytically obtained as a function of the noise parameters. In turn, this permits the optimization of the telecloning protocol, including its adaptive modifications to the noisy environment. In the optimized scheme the clones' fidelity remains maximal even in the presence of losses (in the absence of thermal noise), for propagation times that diverge as the number of modes increases. In the optimization procedure the prominent role played by the location of the entanglement source is analyzed in details. Our results indicate that, when only losses are present, telecloning is a more effective way to distribute quantum information than direct transmission followed by local cloning.
Resumo:
We address the presence of nondistillable (bound) entanglement in natural many-body systems. In particular, we consider standard harmonic and spin-1/2 chains, at thermal equilibrium and characterized by few interaction parameters. The existence of bound entanglement is addressed by calculating explicitly the negativity of entanglement for different partitions. This allows us to individuate a range of temperatures for which no entanglement can be distilled by means of local operations, despite the system being globally entangled. We discuss how the appearance of bound entanglement can be linked to entanglement-area laws, typical of these systems. Various types of interactions are explored, showing that the presence of bound entanglement is an intrinsic feature of these systems. In the harmonic case, we analytically prove that thermal bound entanglement persists for systems composed by an arbitrary number of particles. Our results strongly suggest the existence of bound entangled states in the macroscopic limit also for spin-1/2 systems.