56 resultados para the similar structure
Resumo:
Pancreatic polypeptide (PP) has been isolated from extracts of the pancreas of the European hedgehog (Erinaceous europaeus) which is a representative of the order Insectivora, deemed to be the most primitive group of placental mammals. Pancreatic tissues were extracted in acidified ethanol and the peptide was purified chromatographically using a PP C-terminal hexapeptide amide specific radioimmunoassay to monitor purification. Two major PP-immunoreactive peptides were baseline-resolved following the final analytical reverse phase HPLC fractionation. Each was separately subjected to plasma desorption mass spectroscopy (PDMS) and gas-phase sequencing. The molecular masses of each peptide were similar: (I) 4237.6 +/- 4 Da and (II) 4238.2 +/- 4 Da. The full primary structures of each peptide were deduced and these were identical: VPLEPVYPGDNATPEQMAHYAAELRRYINMLTRPRY. The peptides were deemed to be amidated due to their full molar cross-reactivity with the amide-requiring PP antiserum employed in radioimmunoassay. The molecular mass (4233.8 Da) calculated from the sequence was in close agreemeent with PDMS estimates and the reason for the different retention times of each peptide is unknown at present. Hedgehog PP exhibits only 2 unique amino acid substitutions, at positions 1 (Val) and 19 (His), when compared with other mammalian analogues.
Resumo:
The spin asymmetry arising in an (e,2e) process using spin- polarized incoming electrons with non-relativistic energies is shown to be dominated by the fine structure effect if a suitable kinematical regime is chosen. Calculations in the distorted wave Born approximation (DWBA) for both the triple differential cross-section and the spin asymmetry are presented for the inner shell ionization of argon. This process would provide an accessible target for existing experimental set-ups.
Resumo:
A large-scale configuration interaction (Cl) calculation using Program CIV3 of Hibbert is performed for the lowest 62 fine- structure levels of the singly charged chlorine ion. Our calculated energy levels agree very well with most of the NIST results and confirm the identification of the lowest P-1(o) as actually 3s(2)3p(3)(D-2(o))3d P-1(o) rather than the generally employed 3s3p(5) P-1(o) in measurements and calculations. Discrepancies in the energy positions of some symmetries are found and discussed. Some large oscillator strengths for allowed and intercombination transitions in both length and velocity gauges are presented. Their close agreement gives credence to the accuracy of our CI wavefunctions.
Resumo:
A simulation scheme is proposed for determining the excess chemical potential of a substance in solution. First, a Monte Carlo simulation is performed with classical models for solute and solvent molecules. A representative sample of these configurations is then used in a hybrid quantum/classical (QM/MM) calculation, where the solute is treated quantum-mechanically, and the average electronic structure is used to construct an improved classical model. This procedure is iterated to self-consistency in the classical model, which in practice is attained in one or two steps, depending on the quality of the initial guess. The excess free energy of the molecule within the QM/MM approach is determined relative to the classical model using thermodynamic perturbation theory with a cumulant expansion. The procedure provides a method of constructing classical point charge models appropriate for the solution and gives a measure of the importance of solvent fluctuations.
Resumo:
Molecular dynamics simulations of the liquid/vacuum surfaces of the room temperature ionic liquids [bmim][PF6], [bmim][BF4] and [bmim][Cl] have been carried out at various temperatures. The surfaces are structured with a top monolayer containing oriented cations and anions. The butyl side chains tend to face the vacuum and the methyl side chains the liquid. However, as the butyl chains are not densely packed, both anions and rings are visible from the vacuum phase. The effects of temperature and the anion on the degree of cation orientation is small, but the potential drop from the vacuum to the interior of the liquid is greater for liquids with smaller anions. We compare the simulation results with a range of experimental observations and suggest that neutron reflection from samples with protiated butyl groups would be a sensitive probe of the structure.
Resumo:
Aims. We study the dependence of the profiles of molecular abundances and line emission on the accretion flow in the hot (100 K) inner region of protoplanetary disks.
Methods. The gas-phase reactions initiated by evaporation of the ice mantle on dust grains are calculated along the accretion flow. We focus on methanol, a molecule that is formed predominantly by the evaporation of warm ice mantles, to demonstrate how its abundance profile and line emission depend on the accretion flow.
Results. Our results indicate that some evaporated molecules retain high abundances only when the accretion velocity is sufficiently high, and that methanol could be useful as a diagnostic of the accretion flow by means of ALMA observations at the disk radius of 10 AU.
Resumo:
A short synthesis of the postulated structure for indolizidine alkaloid 259B with the hydrogens at C5 and C9 entgegen has been achieved with complete control of stereochemistry at C5. Both diastereoisomers at C8 were obtained, but neither proved to be the natural product. The comparison of the mass and FTIR spectral properties of the synthetic compounds to those of the natural material strongly suggest that the gross structure is correct and that the difference may be a branch in the C5 alkyl side-chain. The GC-retention times of the two synthetic compounds were markedly longer than that of the natural 5,9E-259B.