46 resultados para the Yellow Sea
Resumo:
A long-synonymized species Benthoctopus normani (Massy 1907) (Cephalopoda: Octopodidae) is redescribed from material collected over 30 years by the National Oceanography Centre, Southampton and the National Museums of Scotland. It can be distinguished from other octopodid specimens found in deep waters of the Northeast Atlantic by its biserial suckers, lack of ink sac, and simple ligula, which lacks transverse ridges. Examination of the collections led to the identification of a new species of Benthoctopus from the Northeast Atlantic, which is described herein.
Resumo:
This study investigated the taxonomy and distribution of the deep-sea polyplacophoran mollusc Nierstraszella Sirenko, 1992 in the Indo-West Pacific, based on a collection of 516 specimens collected in the Philippines and Solomon Islands. Although seven species names have historically been proposed in this group of chitons, all have been considered as synonyms of the monotypic N. lineata (Nierstrasz, 1905). Morphological examination of this new material reveals the presence of two species. N. lineata is distinct from N. andamanica (Smith, 1906), based on morphological characters given in the original species description and very distinctly different morphology of aesthete pores in the shell surface. Furthermore, populations of N. andamanica in the Philippines and Solomon Islands are locally colonized with the epibiotic (ectoparasitic) bryozoan Pseudobathyalozoon profundum d'Hondt, 2006. These bryozoans attach ventrally to the girdle of the host chiton and the erect zooids feed within the pallial cavity, among the chiton's gills.
Resumo:
Lepidopleurida is the earliest diverged group of living polyplacophoran molluscs. They are found predominantly in the deep sea, including sunken wood, cold seeps, other abyssal habitats, and a few species are found in shallow water. The group is morphologically identified by anatomical features of their gills, sensory aesthetes, and gametes. Their shell features closely resemble the oldest fossils that can be identified as modern polyplacophorans. We present the first molecular phylogenetic study of this group, and also the first combined phylogenetic analysis for any chiton, including three gene regions and 69 morphological characters. The results show that Lepidopleurida is unambiguously monophyletic, and the nine genera fall into five distinct clades, which partly support the current view of polyplacophoran taxonomy. The genus Hanleyella Sirenko, 1973 is included in the family Protochitonidae, and Ferreiraellidae constitutes another distinct clade. The large cosmopolitan genus Leptochiton Gray, 1847 is not monophyletic; Leptochiton and Leptochitonidae sensu stricto are restricted to North Atlantic and Mediterranean taxa. Leptochitonidae s. str. is sister to Protochitonidae. The results also suggest two separate clades independently inhabiting sunken wood substrates in the south-west Pacific. Antarctic and other chemosynthetic-dwelling species may be derived from wood-living species. Substantial taxonomic revision remains to be done to resolve lepidopleuran classification, but the phylogeny presented here is a dramatic step forward in clarifying the relationships within this interesting group.
Resumo:
Potential fecundity, number of oocytes in the mature ovary, and realized fecundity, number of eggs extruded and attached to the pleopods of female Nephrops, caught at the start of the incubation period were estimated for females from the eastern and western Irish Sea grounds. Potential fecundity was found to differ significantly between eastern and western Irish Sea stocks, while realized fecundity did not differ between areas. Inter-year comparison of realized fecundity, and effective fecundity (the number of mature eggs on the pleopods of females at the end of the incubation period) in the western Irish Sea stocks revealed no significant variation over time. Egg loss during the transition from oocytes in the ovary to mature eggs increased with female size, ranging from 40% at 25 mm carapace length (CL) to 65% at 40 mm CL. No relationship was found between egg diameter or volume and female size.
Resumo:
We present the detection of the putative progenitor of the Type IIb SN 2011dh in archival pre-explosion Hubble Space Telescope images. Using post-explosion Adaptive Optics imaging with Gemini NIRI+ALTAIR, the position of the supernova (SN) in the pre-explosion images was determined to within 23 mas. The progenitor candidate is consistent with an F8 supergiant star (logL/L sun = 4.92 ± 0.20 and T eff = 6000 ± 280 K). Through comparison with stellar evolution tracks, this corresponds to a single star at the end of core C-burning with an initial mass of M ZAMS = 13 ± 3 M sun. The possibility of the progenitor source being a cluster is rejected, on the basis of: (1) the source not being spatially extended, (2) the absence of excess Ha emission, and (3) the poor fit to synthetic cluster spectral energy distributions (SEDs). It is unclear if a binary companion is contributing to the observed SED, although given the excellent correspondence of the observed photometry to a single star SED we suggest that the companion does not contribute significantly. Early photometric and spectroscopic observations show fast evolution similar to the transitional Type IIb SN 2008ax and suggest that a large amount of the progenitor's hydrogen envelope was removed before explosion. Late-time observations will reveal if the yellow supergiant or the putative companion star were responsible for this SN explosion.
Resumo:
The tentacles of deep-sea holothurians show a wide range of morphological diversity. The present paper examines gross tentacle morphology in surface deposit feeding holothurians from a range of bathymetric depths. Species studied included the elasipods: Oneirophanta mutabilis, Psychropotes longicauda and Benthogone rosea and the aspidochirotids: Paroriza prouhoi, Pseudostichopus sp., Bathyplotes natans and Paroriza pallens. The sympatric abyssal species Oneirophanta mutabilis, Psychropotes longicauda and Pseudostichopus sp. show subtle differences in diet and the structure and filling patterns of the gut that suggest differences in feeding strategies which may represent one mechanism to overcome competition for food resources in an environment where nutrient resources are considered to be, at least periodically, limiting. Interspecific differences in tentacle functional morphology and digestive strategies, which reflects taxonomic diversity could be explained in terms of Sanders'; Stability–Time Hypothesis. Since different tentacle types will turn over sediments to different extents, their impact on sedimentary communities will be enormous so that high diversity in meiofaunal communities may be explained most simply by Dayton and Hessler's Biological Disturbance Hypothesis.