3 resultados para théorie de la double hérédité
Resumo:
Context. The recent discovery of a very bright type la supernova, SNLS-03D3bb (=SN 2003fg), in the Supernova Legacy Survey (SNLS) has raised the question of whether super-Chandrasekhar-mass white-dwarf stars are needed to explain such bright explosions. Progenitors of this sort could form by mergers of pairs of rather massive white dwarfs. Binary systems of two white dwarfs in close orbit, where their total mass significantly exceeds the Chandrasekhar mass, have not yet been found. Therefore SNLS-03D3bb could establish the first clear case of a double-degenerate progenitor of a (peculiar) type la supernovae. Moreover, if this interpretation is correct, it casts some doubt on the universality of the calibration relations used to make SNe la distance indicators for cosmology. Aims. We aim to evaluate the case for a super-Chandrasekhar-mass progenitor for SNLS-03D3bb in light of previous theoretical work on super-Chandrasekhar-mass explosions. Furthermore, we propose an alternative scenario involving only a Chandrasekhar-mass progenitor. Methods. We present a theoretically motivated critical discussion of the expected observational fingerprints of super-Chandrasekharmass explosions. As an alternative, we describe a simple class of aspherical Chandrasekhar-mass models in which the products of nuclear burning are displaced from the center. We then perform simple radiative transfer calculations to predict synthetic lightcurves for one such off-center explosion model. Results. In important respects, the expected observational consequences of super-Chandrasekhar-mass explosions are not consistent with the observations of SNLS-03D3bb. We demonstrate that the lopsided explosion of a Chandrasekhar-mass white dwarf could provide a better explanation. © ESO 2007.
Resumo:
We present data for LSQ14bdq, a hydrogen-poor super-luminous supernova (SLSN) discovered by the La Silla QUEST survey and classified by the Public ESO Spectroscopic Survey of Transient Objects. The spectrum and light curve are very similar to slow-declining SLSNe such as PTF12dam. However, detections within ∼1 day after explosion show a bright and relatively fast initial peak, lasting for ∼15 days, prior to the usual slow rise to maximum light. The broader, main peak can be fit with either central engine or circumstellar interaction models. We discuss the implications of the precursor peak in the context of these models. It is too bright and narrow to be explained as a normal <sup>56</sup>Ni-powered SN, and we suggest that interaction models may struggle to fit the two peaks simultaneously. We propose that the initial peak may arise from the post-shock cooling of extended stellar material, and reheating by a central engine drives the second peak. In this picture, we show that an explosion energy of ∼2 × 10<sup>52</sup> erg and a progenitor radius of a few hundred solar radii would be required to power the early emission. The competing engine models involve rapidly spinning magnetars (neutron stars) or fallback onto a central black hole. The prompt energy required may favor the black hole scenario. The bright initial peak may be difficult to reconcile with a compact Wolf-Rayet star as a progenitor since the inferred energies and ejected masses become unphysical.