2 resultados para tetrapeptide


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The increasing emergence of multidrug-resistant micro-organisms presents one of the greatest challenges in the clinical management of infectious diseases. Therefore, novel antimicrobial agents are urgently required to address this issue. In this report, we describe the solid phase synthesis, characterization, microbiological and toxicological evaluation of a library of ultrashort cationic antimicrobial lipopeptides based on the previously described tetrapeptide amide H-Orn-Orn-Trp-Trp-NH2 conjugated with saturated fatty acids which have inherent antimicrobial activity. The microbiological activity of these ultrashort cationic lipopeptides, which exhibit excellent, broad-spectrum antimicrobial activity against a number of clinically important pathogenic bacteria and fungi, including multidrug resistant micro-organisms in both planktonic and sessile (biofilm) cultures is reported.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, we report the antimicrobial planktonic and biofilm kill kinetics of ultrashort cationic lipopeptides previously demonstrated by our group to have a minimum biofilm eradication concentration (MBEC) in the microgram per mL (μg/mL) range against clinically relevant biofilm-forming micro-organisms. We compare the rate of kill for the most potent of these lipopeptides, dodecanoic (lauric) acid-conjugated C12-Orn-Orn-Trp-Trp-NH2 against the tetrapeptide amide H-Orn-Orn-Trp-Trp-NH2 motif and the amphibian peptide Maximin-4 via a modification of the MBEC Assay™ for Physiology & Genetics (P&G). Improved antimicrobial activity is achieved upon N-terminal lipidation of the tetrapeptide amide. Increased antimicrobial potency was demonstrated against both planktonic and biofilm forms of Gram-positive micro-organisms. We hypothesize rapid kill to be achieved by targeting of microbial membranes. Complete kill against established 24-h Gram-positive biofilms occurred within 4 h of exposure to C12-OOWW-NH2 at MBEC values [methicillin-resistant Staphylococcus epidermidis (ATCC 35984): 15.63 μg/mL] close to the values for the planktonic minimum inhibitory concentration (MIC) [methicillin-resistant Staphylococcus epidermidis (ATCC 35984): 1.95 μg/mL]. Such rapid kill, especially against sessile biofilm forms, is indicative of a reduction in the likelihood of resistant strains developing with the potential for quicker resolution of pathogenic infection. Ultrashort antimicrobial lipopeptides have high potential as antimicrobial therapy.