3 resultados para temporal molecular evolution
Resumo:
The progressive elucidation of the molecular pathogenesis of cancer has fueled the rational development of targeted drugs for patient populations stratified by genetic characteristics. Here we discuss general challenges relating to molecular diagnostics and describe predictive biomarkers for personalized cancer medicine. We also highlight resistance mechanisms for epidermal growth factor receptor (EGFR) kinase inhibitors in lung cancer. We envisage a future requiring the use of longitudinal genome sequencing and other omics technologies alongside combinatorial treatment to overcome cellular and molecular heterogeneity and prevent resistance caused by clonal evolution.
Resumo:
We have used whole exome sequencing to compare a group of presentation t(4;14) with t(11;14) cases of myeloma to define the mutational landscape. Each case was characterized by a median of 24.5 exonic nonsynonymous single-nucleotide variations, and there was a consistently higher number of mutations in the t(4;14) group, but this number did not reach statistical significance. We show that the transition and transversion rates in the 2 subgroups are similar, suggesting that there was no specific mechanism leading to mutation differentiating the 2 groups. Only 3% of mutations were seen in both groups, and recurrently mutated genes include NRAS, KRAS, BRAF, and DIS3 as well as DNAH5, a member of the axonemal dynein family. The pattern of mutation in each group was distinct, with the t(4;14) group being characterized by deregulation of chromatin organization, actin filament, and microfilament movement. Recurrent RAS pathway mutations identified subclonal heterogeneity at a mutational level in both groups, with mutations being present as either dominant or minor subclones. The presence of subclonal diversity was confirmed at a single-cell level using other tumor-acquired mutations. These results are consistent with a distinct molecular pathogenesis underlying each subgroup and have important impacts on targeted treatment strategies. The Medical Research Council Myeloma IX trial is registered under ISRCTN68454111.
Resumo:
Lung cancer diagnostics have progressed greatly in the previous decade. Development of molecular testing to identify an increasing number of potentially clinically actionable genetic variants, using smaller samples obtained via minimally invasive techniques, is a huge challenge. Tumour heterogeneity and cancer evolution in response to therapy means that repeat biopsies or circulating biomarkers are likely to be increasingly useful to adapt treatment as resistance develops. We highlight some of the current challenges faced in clinical practice for molecular testing of EGFR, ALK, and new biomarkers such as PDL1. Implementation of next generation sequencing platforms for molecular diagnostics in non-small-cell lung cancer is increasingly common, allowing testing of multiple genetic variants from a single sample. The use of next generation sequencing to recruit for molecularly stratified clinical trials is discussed in the context of the UK Stratified Medicine Programme and The UK National Lung Matrix Trial.