21 resultados para tangency points
Resumo:
This paper examines the possibilities for peripheral localities to achieve upward mobility in the world-system by “hooking on” to larger processes of world-system accumulation. In particular, is it possible for economies that are dependent on foreign investment to receive a flow of investments that is high enough to overcome the negative impacts of a high stock of foreign investment, thus enabling them to cross a threshold and achieve upward mobility in the world-system? An analysis of therecent experience of the southern Irish “Celtic Tiger” economy during 1990-2000 indicates that such an upward movement is possible on the basis of massive foreign investment inflows. On closer examination, however, the Irish-type model appears to be highly deficient, because a high proportion of growth is illusionary and also on grounds of social desirability and lack of generalizability.
Resumo:
The spatial variation of chromospheric oscillations in network bright points (NBPs) is studied using high-resolution observations in Ca II K3. Light curves and hence power spectra were created by isolating distinct regions of the NBP via a simple intensity thresholding technique. Using this technique, it was possible to identify peaks in the power spectra with particular spatial positions within the NBPs. In particular, long-period waves with periods of 4-15 minutes (1-4 mHz) were found in the central portions of each NBP, indicating that these waves are certainly not acoustic but possibly due to magnetoacoustic or magnetogravity wave modes. We also show that spatially averaged or low spatial resolution power spectra can lead to an inability to detect such long-period waves.
An alternative method for the estimation of the terminal slope when a few data points are available.
Resumo:
Magnetic bright points (MBPs) in the internetwork are among the smallest objects in the solar photosphere and appear bright against the ambient environment. An algorithm is presented that can be used for the automated detection of the MBPs in the spatial and temporal domains. The algorithm works by mapping the lanes through intensity thresholding. A compass search, combined with a study of the intensity gradient across the detected objects, allows the disentanglement of MBPs from bright pixels within the granules. Object growing is implemented to account for any pixels that might have been removed when mapping the lanes. The images are stabilized by locating long-lived objects that may have been missed due to variable light levels and seeing quality. Tests of the algorithm, employing data taken with the Swedish Solar Telescope, reveal that approximate to 90 per cent of MBPs within a 75 x 75 arcsec(2) field of view are detected.
Resumo:
High-cadence, multiwavelength, optical observations of solar magnetic bright points (MBPs), captured at the disk center using the ROSA and IBIS imaging systems on the Dunn Solar Telescope, are presented. MBPs manifesting in the Na I D-1 core are found to preferentially exist in regions containing strong downflows, in addition to cospatial underlying photospheric magnetic field concentrations. Downdrafts within Na I D-1 bright points exhibit speeds of up to 7 km s(-1), with preferred structural symmetry in intensity, magnetic field, and velocity profiles about the bright point center. Excess intensities associated with G-band and Ca II K observations of MBPs reveal a power-law trend when plotted as a function of the magnetic flux density. However, Na I D-1 observations of the same magnetic features indicate an intensity plateau at weak magnetic field strengths below approximate to 150 G, suggesting the presence of a two-component heating process: one which is primarily acoustic and the other predominantly magnetic. We suggest that this finding is related to the physical expansion of magnetic flux tubes, with weak field strengths (approximate to 50 G) expanding by similar to 76%, compared to a similar to 44% expansion when higher field strengths (approximate to 150 G) are present. These observations provide the first experimental evidence of rapid downdrafts in Na I D-1 MBPs and reveal the nature of a previously unresolved intensity plateau associated with these structures.
Resumo:
Magnetic bright points (MBPs) are among the smallest observable objects on the solar photosphere. A combination of G-band observations and numerical simulations is used to determine their area distribution. An automatic detection algorithm, employing one-dimensional intensity profiling, is utilized to identify these structures in the observed and simulated data sets. Both distributions peak at an area of approximate to 45,000 km(2), with a sharp decrease toward smaller areas. The distributions conform with log-normal statistics, which suggests that flux fragmentation dominates over flux convergence. Radiative magneto-convection simulations indicate an independence in the MBP area distribution for differing magnetic flux densities. The most commonly occurring bright point size corresponds to the typical width of inter-granular lanes.
Resumo:
We use high spatial resolution observations and numerical simulations to study the velocity distribution of solar photospheric magnetic bright points. The observations were obtained with the Rapid Oscillations in the Solar Atmosphere instrument at the Dunn Solar Telescope, while the numerical simulations were undertaken with the MURaM code for average magnetic fields of 200 G and 400 G. We implemented an automated bright point detection and tracking algorithm on the data set and studied the subsequent velocity characteristics of over 6000 structures, finding an average velocity of approximately 1 km s(-1), with maximum values of 7 km s(-1). Furthermore, merging magnetic bright points were found to have considerably higher velocities, and significantly longer lifetimes, than isolated structures. By implementing a new and novel technique, we were able to estimate the background magnetic flux of our observational data, which is consistent with a field strength of 400 G.
Resumo:
Context. Bright points (BPs) are small-scale, magnetic features ubiquitous across the solar surface. Previously, we have observed and noted their properties for quiet Sun regions. Here, we determine the dynamic properties of BPs using simultaneous quiet Sun and active region data.
Aims. The aim of this paper is to compare the properties of BPs in both active and quiet Sun regions and to determine any difference in the dynamics and general properties of BPs as a result of the varying magnetic activity within these two regions.
Methods. High spatial and temporal resolution G-band observations of active region AR11372 were obtained with the Rapid Oscillations in the Solar Atmosphere instrument at the Dunn Solar Telescope. Three subfields of varying polarity and magnetic flux density were selected with the aid of magnetograms obtained from the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory. Bright points within these subfields were subsequently tracked and analysed.
Results. It is found that BPs within active regions display attenuated velocity distributions with an average horizontal velocity of ~0.6 km s-1, compared to the quiet region which had an average velocity of 0.9 km s-1. Active region BPs are also ~21% larger than quiet region BPs and have longer average lifetimes (~132 s) than their quiet region counterparts (88 s). No preferential flow directions are observed within the active region subfields. The diffusion index (γ) is estimated at ~1.2 for the three regions.
Conclusions. We confirm that the dynamic properties of BPs arise predominately from convective motions. The presence of stronger field strengths within active regions is the likely reason behind the varying properties observed. We believe that larger amounts of magnetic flux will attenuate BP velocities by a combination of restricting motion within the intergranular lanes and by increasing the number of stagnation points produced by inhibited convection. Larger BPs are found in regions of higher magnetic flux density and we believe that lifetimes increase in active regions as the magnetic flux stabilises the BPs.
Resumo:
The motor points of the skeletal muscles, mainly of interest to anatomists and physiologists, have recently attracted much attention from researchers in the field of functional electrical stimulation. The muscle motor point has been defined as the entry point of the motor nerve branch into the epimysium of the muscle belly. Anatomists have pointed out that many muscles in the limbs have multiple motor points. Knowledge of the location of nerve branches and terminal nerve entry points facilitates the exact insertion and the suitable selection of the number of electrodes required for each muscle for functional electrical stimulation. The present work therefore aimed to describe the number, location, and distribution of motor points in the human forearm muscles to obtain optimal hand function in many clinical situations. Twenty three adult human cadaveric forearms were dissected. The numbers of primary nerves and motor points for each muscle were tabulated. The mean numbers and the standard deviation were calculated and grouped in tables. Data analyses were performed with the use of a statistical analysis package (SPSS 13.0). The proximal third of the muscle was the usual part of the muscle that received the motor points. Most of the forearm muscles were innervated from the lateral side and deep surface of the muscle. The information in this study may also be usefully applied in selective denervation procedures to balance muscles in spastic upper limbs. Copyright © 2007 Via Medica.
Resumo:
In clinical practice, pharmacists play a very important role in identifying and correcting medication discrepancies as older patients move across transition points of care. With increasing complexity of health care needs of older people, these discrepancies are likely to increase. The major concern with identifying and correcting medication discrepancies is that medication reconciliation is considered a retrospective problem – that is, dealing with medication discrepancies after they have occurred. It is argued here that a more proactive stance should be taken where doctors, nurses and pharmacists collectively work together to prevent medication discrepancies from happening in the first place. Improved involvement of patients and family members will help to facilitate better management of medications across transition points of care. Efficient use of information technology aids, such as electronic medication reconciliation tools, should also assist with organizational systems problems associated with the working culture, heavy workloads, and staff and skill mix of health professionals.