2 resultados para tacit knowledge sharing


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Purpose – This paper aims to contribute towards understanding how safety knowledge can be elicited from railway experts for the purposes of supporting effective decision-making. Design/methodology/approach – A consortium of safety experts from across the British railway industry is formed. Collaborative modelling of the knowledge domain is used as an approach to the elicitation of safety knowledge from experts. From this, a series of knowledge models is derived to inform decision-making. This is achieved by using Bayesian networks as a knowledge modelling scheme, underpinning a Safety Prognosis tool to serve meaningful prognostics information and visualise such information to predict safety violations. Findings – Collaborative modelling of safety-critical knowledge is a valid approach to knowledge elicitation and its sharing across the railway industry. This approach overcomes some of the key limitations of existing approaches to knowledge elicitation. Such models become an effective tool for prediction of safety cases by using railway data. This is demonstrated using passenger–train interaction safety data. Practical implications – This study contributes to practice in two main directions: by documenting an effective approach to knowledge elicitation and knowledge sharing, while also helping the transport industry to understand safety. Social implications – By supporting the railway industry in their efforts to understand safety, this research has the potential to benefit railway passengers, staff and communities in general, which is a priority for the transport sector. Originality/value – This research applies a knowledge elicitation approach to understanding safety based on collaborative modelling, which is a novel approach in the context of transport.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we propose three relay selection schemes for full-duplex heterogeneous networks in the presence of multiple cognitive radio eavesdroppers. In this setup, the cognitive small-cell nodes (secondary network) can share the spectrum licensed to the macro-cell system (primary network) on the condition that the quality-of-service of the primary network is always satisfied subjected to its outage probability constraint. The messages are delivered from one small-cell base station to the destination with the help of full-duplex small-cell base stations, which act as relay nodes. Based on the availability of the network’s channel state information at the secondary information source, three different selection criteria for full-duplex relays, namely: 1) partial relay selection; 2) optimal relay selection; and 3) minimal self-interference relay selection, are proposed. We derive the exact closed-form and asymptotic expressions of the secrecy outage probability for the three criteria under the attack of non-colluding/colluding eavesdroppers. We demonstrate that the optimal relay selection scheme outperforms the partial relay selection and minimal self-interference relay selection schemes at the expense of acquiring full channel state information knowledge. In addition, increasing the number of the full-duplex small-cell base stations can improve the security performance. At the illegitimate side, deploying colluding eavesdroppers and increasing the number of eavesdroppers put the confidential information at a greater risk. Besides, the transmit power and the desire outage probability of the primary network have great influences on the secrecy outage probability of the secondary network.