89 resultados para tablet compression
Resumo:
This paper describes an investigation of the effect of fill factor; on the compaction behaviour of the granules during tableting and hence mechanical properties of tablets formed. The fill factor; which is the ratio of volume of wet powder material to vessel volume of the granulator, was used as an indicator of batch size. It has been established previously that in high shear granulation the batch size influences the size distribution and granule mechanical properties [1]. The work reported in this paper is an extension to the work presented in [1], hence granules from the same batches were used in production of tablets. The same tabletting conditions were employed during tabletting to allow a comparison of their properties. The compaction properties of the granules are inferred from the data generated during the tabletting process. The tablet strength and dissolution properties of the tablets were also measured. The results obtained show that the granule batch size affects the strength and dissolution of the tablets formed. The tablets produced from large batches were found to be weaker and had a faster dissolution rate. The fill factor was also found to affect the tablet to tablet variation of a non-functional active pharmaceutical ingredient included in the feed powder. Tablets produced from larger batches show greater variation compared to those from smaller batches.
Resumo:
Aircraft fuselages are complex assemblies of thousands of components and as a result simulation models are highly idealised. In the typical design process, a coarse FE model is used to determine loads within the structure. The size of the model and number of load cases necessitates that only linear static behaviour is considered. This paper reports on the development of a modelling approach to increase the accuracy of the global model, accounting for variations in stiffness due to non-linear structural behaviour. The strategy is based on representing a fuselage sub-section with a single non-linear element. Large portions of fuselage structure are represented by connecting these non-linear elements together to form a framework. The non-linear models are very efficient, reducing computational time significantly
Resumo:
This study investigates the influence of process parameters on the fluidised hot melt granulation of lactose and PEG 6000, and the subsequent tablet pressing of the granules. Granulation experiments were performed to assess the effect of granulation time and binder content of the feed on the resulting granule properties such as mass mean granule size, size distribution, granule fracture stress, and granule porosity. These data were correlated using the granule growth regime model. It was found that the dominant granule growth mechanisms in this melt granulation system were nucleation followed by steady growth (PEG 10–20% w/w). However, with binder contents greater than 20% w/w, the granulation mechanism moved to the “over-wet massing” regime in which discrete granule formation could not be obtained. The granules produced in the melt fluidised bed process were subsequently pressed into tablets using an industrial tablet press. The physical properties of the tablets: fracture stress, disintegration time and friability were assessed using industry standards. These analyses indicated that particle size and binder content of the initial granules influenced the mechanical properties of the tablets. It was noted that a decrease in initial granule size resulted in an increase in the fracture stress of the tablets formed.
Resumo:
Wavelets introduce new classes of basis functions for time-frequency signal analysis and have properties particularly suited to the transient components and discontinuities evident in power system disturbances. Wavelet analysis involves representing signals in terms of simpler, fixed building blocks at different scales and positions. This paper examines the analysis and subsequent compression properties of the discrete wavelet and wavelet packet transforms and evaluates both transforms using an actual power system disturbance from a digital fault recorder. The paper presents comparative compression results using the wavelet and discrete cosine transforms and examines the application of wavelet compression in power monitoring to mitigate against data communications overheads.