3 resultados para system parameter identification
Resumo:
Responsibilization, or the shift of functions and risks from providers and producers to consumers, has become an increasingly common policy in service systems and marketplaces (e.g., financial, health, governmental). As responsibilization is often considered synonymous with consumer agency and well-being, the authors take a transformative service research perspective and draw on resource integration literature to investigate whether responsibilization is truly associated with well-being. The authors focus on expert services, for which responsibilization concerns are particularly salient, and question whether this expanding policy is in the public interest. In the process, they develop a conceptualization of resource integration under responsibilization that includes three levels of actors (consumer, provider, and service system), the identification of structural tensions to resource integration, and three categories of resource integration practices (access, appropriation, and management) necessary to negotiate responsibilization. The findings have important implications for health care providers, public and institutional policy makers, and other service systems, all of which must pay more active attention to the challenges consumers face in negotiating responsibilization and the resulting well-being outcomes.
Resumo:
Responsibilization, or the shift in functions and risks from providers and producers to the consumer, has become an increasingly common policy in service systems and marketplaces (e.g., financial, health, governmental). Responsibilization is often presented as synonymous with consumer agency and well-being. We take a transformative service research perspective and utilize the resource integration framework to investigate whether responsibilization is truly associated with well-being. We focus on expert services, where responsibilization concerns are particularly salient, and question whether this expanding policy is in the public interest. In the process, we develop a conceptualization of resource integration under responsibilization that includes three levels of actors (consumer, provider and service system), the identification of structural tensions to resource integration and three categories of resource integration practices (access, appropriation and management) necessary to negotiate responsibilization. Our findings have important implications for health care providers, public policy makers, and other service systems, all of which must pay more active attention to the challenges consumers face in negotiating responsibilization and the resulting well-being outcomes.
Resumo:
With the main focus on safety, design of structures for vibration serviceability is often overlooked or mismanaged, resulting in some high profile structures failing publicly to perform adequately under human dynamic loading due to walking, running or jumping. A standard tool to inform better design, prove fitness for purpose before entering service and design retrofits is modal testing, a procedure that typically involves acceleration measurements using an array of wired sensors and force generation using a mechanical shaker. A critical but often overlooked aspect is using input (force) to output (response) relationships to enable estimation of modal mass, which is a key parameter directly controlling vibration levels in service.
This paper describes the use of wireless inertial measurement units (IMUs), designed for biomechanics motion capture applications, for the modal testing of a 109 m footbridge. IMUs were first used for an output-only vibration survey to identify mode frequencies, shapes and damping ratios, then for simultaneous measurement of body accelerations of a human subject jumping to excite specific vibrations modes and build up bridge deck accelerations at the jumping location. Using the mode shapes and the vertical acceleration data from a suitable body landmark scaled by body mass, thus providing jumping force data, it was possible to create frequency response functions and estimate modal masses.
The modal mass estimates for this bridge were checked against estimates obtained using an instrumented hammer and known mass distributions, showing consistency among the experimental estimates. Finally, the method was used in an applied research application on a short span footbridge where the benefits of logistical and operational simplicity afforded by the highly portable and easy to use IMUs proved extremely useful for an efficient evaluation of vibration serviceability, including estimation of modal masses.