2 resultados para surgical site infection
Resumo:
The human pathogens enteropathogenic (EPEC) and enterohemorrhagic Escherichia coli and the related mouse pathogen Citrobacter rodentium subvert a variety of host cell signaling pathways via their plethora of type III secreted effectors, including triggering of an early apoptotic response. EPEC-infected cells do not develop late apoptotic symptoms, however. In this study we demonstrate that the NleH family effectors, homologs of the Shigella effector kinase OspG, blocks apoptosis. During EPEC infection, NleH effectors inhibit elevation of cytosolic Ca(2+) concentrations, nuclear condensation, caspase-3 activation, and membrane blebbing and promote cell survival. NleH1 alone is sufficient to prevent procaspase-3 cleavage induced by the proapoptotic compounds staurosporine, brefeldin A, and tunicamycin. Using C. rodentium, we found that NleH inhibits procaspase-3 cleavage at the bacterial attachment sites in vivo. A yeast two-hybrid screen identified the endoplasmic reticulum six-transmembrane protein Bax inhibitor-1 (BI-1) as an NleH-interacting partner. We mapped the NleH-binding site to the N-terminal 40 amino acids of BI-1. Knockdown of BI-1 resulted in the loss of NleH's antiapoptotic activity. These results indicate that NleH effectors are inhibitors of apoptosis that may act through BI-1 to carry out their cytoprotective function.
Resumo:
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is an important human pathogen that colonizes the gut mucosa via attaching and effacing (A/E) lesions; A/E lesion formation in vivo and ex vivo is dependent on the type III secretion system (T3SS) effector Tir. Infection of cultured cells by EHEC leads to induction of localized actin polymerization, which is dependent on Tir and a second T3SS effector protein, TccP, also known as EspF(U). Recently, cortactin was shown to bind both the N terminus of Tir and TccP via its SH3 domain and to play a role in EHEC-triggered actin polymerization in vitro. In this study, we investigated the recruitment of cortactin to the site of EHEC adhesion during infection of in vitro-cultured cells and mucosal surfaces ex vivo (using human terminal ileal in vitro organ cultures [IVOC]). We have shown that cortactin is recruited to the site of EHEC adhesion in vitro downstream of TccP and N-WASP. Deletion of the entire N terminus of Tir or replacing the N-terminal polyproline region with alanines did not abrogate actin polymerization or cortactin recruitment. In contrast, recruitment of cortactin to the site of EHEC adhesion in IVOC is TccP independent. These results imply that cortactin is recruited to the site of EHEC adhesion in vitro and ex vivo by different mechanisms and suggest that cortactin might have a role during EHEC infection of mucosal surfaces.