145 resultados para surface plasmon wave
Resumo:
We provide the quantum-mechanical description of the excitation of surface plasmon polaritons on metal surfaces by single photons. An attenuated-reflection setup is described for the quantum excitation process in which we find remarkably efficient photon-to-surface plasmon wave-packet transfer. Using a fully quantized treatment of the fields, we introduce the Hamiltonian for their interaction and study the quantum statistics during transfer with and without losses in the metal.
Resumo:
We describe a simple method for enhancing the efficiency of coupling from a free-space transverse-magnetic (TM) plane-wave mode into a surface-plasmon-polariton (SPP) mode. The coupling structure consists a metal film with a dielectric-filled slit and a planar, dielectric layer on the slit-exit side of the metal film. By varying the dielectric layer thickness, the wavevector of the SPP mode on the metal surface can be tuned to match the wavevector magnitude of the modes emanating from the slit exit, enabling high-efficiency radiation coupling into the SPP mode at the slit exit. An optimal dielectric layer thickness of approximately 100 nm yields a visible-frequency SPP coupling efficiency approximately 4 times greater than the SPP coupling efficiency without the dielectric layer. Commensurate coupling enhancement is observed spanning the free-space wavelength range 400 nm < or = lambda(0) < or = 700 nm. We map the dependence of the SPP coupling efficiency on the slit width, the dielectric-layer thickness, and the incident wavelength to fully characterize this SPP coupling methodology
Resumo:
The propagation of surface plasmon polaritons (SPP's) is studied using a photon scanning tunneling microscope (PSTM) and conventional attenuated total reflection (ATR). The PSTM experiment uses localized (focused beam) launching or SPP's at a wavelength of 632.8 nm. Propagation of the SPP is observed as an exponentially decaying tail beyond the launch site acid the 1/e propagation length is measured directly for a series of Ag films of different thicknesses. The ATR measurements are used to characterize the thin film optical and thickness parameters, revealing, notably, the presence of a contaminating adlayer of Ag2S of typical dielectric function, 8.7 + i2.7, and thickness 1-2 nm. Values of the SPP propagation length, based on the ATR- derived film parameters used in the four-media implicit SPP dispersion relation, show very good agreement with those based on the PSTM images for the case of undercoupled or optimally coupled SPP modes. The observed propagation lengths are quantitatively analyzed taking explicit account of additional intrinsic damping due to the growth of the Ag2S layer and of reradiation of the SPP back into the prism outside the launch site. Finally, the PSTM images show excellent SPP beam confinement in the original propagation direction.
Resumo:
Surface plasmon polaritons (SPPs) are excited with light of wavelength lambda (1) = 632.8 nm on or near a gentle Ag/Ag step structure using focused beam, prism coupling and detected using a bare, sharpened fibre tip. The tip-sample separation is controlled by means of an evanescent optical field at wavelength lambda (2) = 543.5 nm in a photon scanning tunnelling microscope (PSTM). The SPP propagation properties are first characterised on both the thin and thick sections of the Ag film structure either side of the step, both macroscopically, using attenuated total reflection, and microscopically from the PSTM images; the two techniques yield very good agreement. It is found that the SPP propagation length is similar to 10-11 mum across the step in each direction (thick to thin and vice versa) as observed in the PSTM images. Thus, with reference to the propagation lengths of 14.2 and 11.7 mum for the thick and thin planar parts of the Ag film respectively, it is concluded that the SPPs negotiate the step reasonably successfully. Importantly, also, it is shown that images may be produced, displaying SPPs with either an artificially enhanced (similar to 15-20 mum) or truncated (5-8 mum) propagation length across the step. Consideration of such images leads us to suggest the possibility that the photon tunnelling occurs in a local water environment. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Nonlinear optical transmission through periodically nanostructured metal films (surface-plasmon polaritonic crystals) has been studied. The surface polaritonic crystals have been coated with a nonlinear polymer. The optical transmission of such nanostructures has been shown to depend on the control-light illumination conditions. The resonant transmission exhibits bistable behavior with the control-light intensity. The bistability is different at different resonant signal wavelengths and for different wavelengths of the control light. The effect is explained by the strong sensitivity of the surface-plasmon mode resonances at the signal wavelength to the surrounding dielectric environment and the electromagnetic field enhancement due to plasmonic excitations at the controlled light wavelengths.
Resumo:
An analytical treatment of optical transmission through periodically nanosructured metal films capable of supporting surface-plasmon polaritons is presented. The optical properties of such metal films are governed by surface polariton behavior in a periodic surface structure forming a surface polaritonic crystal. Due to different configurations of the electromagnetic field of surface polariton modes, only states of even Brillouin zones are responsible for the optical transmission enhancement at normal incidence. The transmission enhancement is related to photon tunneling via resonant states of surface polariton Bloch modes in which the energy buildup takes place. Surface polariton states of at least one of the film interfaces contribute to the transmission resonance which occurs due to tunnel coupling between photons and surface polaritons on the opposite interfaces. Under double-resonance conditions, resonant tunneling between surface polariton states of both interfaces is achieved, which leads to further enhancement of the transmission efficiency. The double-resonance conditions occur not only in the case of a film in symmetric environment but can also be engineered for a film on a substrate. Light tunneling via surface polariton states can take place directly through a structured metal film and does not necessarily require holes in a film.
Resumo:
The detection of paralytic shellfish poisoning (PSP) toxins in contaminated shellfish is essential for human health preservation. Ethical and technical reasons have prompted the search for new detection procedures as an alternative to the mouse bioassay. On the basis of the detection of molecular interactions by surface plasmon resonance (SPR) biosensors, an inhibition assay was developed using an anti-GTX2/3 antibody (GT13-A) and a saxitoxin-CM5 chip. This assay allowed for quantification of saxitoxin (STX), decarbamoyl saxitoxin (dcSTX), gonyautoxin 2,3 (GTX2/3), decarbamoyl gonyautoxin 2,3 (dcGTX2/3), gonyautoxin 5 (GTX5), and C 1,2 (C1/2) at concentrations from 2 to 50 ng/mL. The interference of five shellfish matrixes with the inhibition assay was analyzed. Mussels, clams, cockles, scallops, and oysters were extracted with five published methods. Ethanol extracts and acetic acid/heat extracts (AOAC Lawrence method) performed adequately in terms of surface regeneration and baseline interference, did not inhibit antibody binding to the chip surface significantly, and presented STX calibration curves similar to buffer controls in all matrixes tested. Hydrochloric acid/heat extracts (AOAC mouse bioassay method) presented surface regeneration problems, and although ethanol-acetic acid/dichloromethane extracts performed well, they were considered too laborious for routine sample testing. Overall the best results were obtained with the ethanol extraction method with calibration curves prepared in blank matrix extracts. STX recovery rate with the ethanol extraction method was 60.52 ± 3.72%, with variations among species. The performance of this biosensor assay in natural samples, compared to two AOAC methods for PSP toxin quantification (mouse bioassay and HPLC), suggests that this technology can be useful as a PSP screening assay. In summary, the GT13-A-STX chip inhibition assay is capable of PSP toxin detection in ethanol shellfish extracts, with sufficient sensitivity to quantify the toxin in the range of the European regulatory limit of 80 g/100 g of shellfish meat.
Resumo:
Spectral dispersion of light on a finite-size surface plasmon polaritonic (SPP) crystal has been studied. The angular wavelength separation of one or more orders of magnitude higher than in other state-of-the-art wavelength-splitting devices available to date has been demonstrated. The two-stage process is responsible for the dispersion value, which involves conversion of the incident light into SPP Bloch modes of a nanostructure followed by the SPP Bloch waves refraction at the SPP crystal boundary. The high spectral dispersion achievable in plasmonic devices may be useful for integrated high-resolution spectroscopy in nanophotonic, optical communication and lab-on-a-chip applications.
Resumo:
A new far-field optical microscopy capable of reaching nanometer-scale resolution is developed using the in-plane image magnification by surface plasmon polaritons. This approach is based on the optical properties of a metal-dielectric interface that may provide extremely large values of the effective refractive index neff up to 103 as seen by surface polaritons, and thus the diffraction limited resolution can reach nanometer-scale values of lambda/2neff. The experimental realization of the microscope has demonstrated the optical resolution better than 60 nm at 515 nm illumination wavelength.
Resumo:
A rapid and sensitive screening qualitative method using a surface plasmon resonance (SPR) biosensor was developed which can detect of all fenicol antibiotic residues in shrimps from a single sample extract. This method requires ethyl acetate extraction followed by a single wash with isooctane/chlorofonrm. Each sample extract is injected over the surfaces of two biosensor chip flow cells, one surface having the capability to detect florefenicol amine (FF amine), florefenicol (FF), and thiamphenicol (TAP) and the second surface for chloramphenicol (CAP) detection. The estimated detection capabilities (CC beta) were 0. 1, 0.2, 250, and 0.5 ppb for CAP, FF, FF amine, and TAP, respectively. This quick, simple test allowed the detection of CAP residues in shrimps at the minimum required performance limit (MRPL) of 0.1 mu g kg(-1) for this compound and of FF, FF amine, and TAP below their maximum residue limits (MRLs). (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The overall quantum efficiency in surface plasmon (SP) enhanced Schottky barrier photodetectors is examined by considering both the external and internal yield. The external yield is considered through calculations of absorption and transmission of light in a configuration that allows reflectance minimization due to SP excitation. Following a Monte Carlo method, a procedure is presented to estimate the internal yield while taking into account the effect of elastic and inelastic scattering processes on excited carriers subsequent to photon absorption. The relative importance of internal photoemission and band-to-band contributions to the internal yield is highlighted along with the variation of the yield as a function of wavelength, metal thickness and other salient parameters of the detector. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
A rapid screening assay (9 min/sample) has been developed and validated for the detection of deoxynivalenol in durum wheat, wheat products, and maize-based baby foods using an SPA biosensor. Through a single laboratory validation, the limits of detection (LOD) for wheat, wheat-based breakfast cereal, and maize-based baby food were 57, 9, and 6 mu g/kg, respectively. Intra-assay and interassay precisions were calculated for each matrix at the maximum and half-maximum European Union regulatory limits and expressed as the coefficient of variation (CV). All CVs fell below 10% with the exception of the between-run CV for breakfast cereal. Recoveries at the concentrations tested ranged from 92 to 115% for all matrices. Action limits of 161, 348, and 1378 mu g/kg were calculated for baby food, wheat-based breakfast cereal, and wheat, respectively, and the linear range of the assay was determined as 250-2000 mu g/kg.
Resumo:
A research element of the European Union (EU) sixth Framework project BioCop focused on the development of a surface plasmon resonance (SPR) biosensor assay for the detection of paralytic shellfish poisoning (PSP) toxins in shellfish as an alternative to the increasingly ethically unacceptable mouse bioassay. A biosensor assay was developed using both a saxitoxin binding protein and chip surface in tandem with a highly efficient simple extraction procedure. The present report describes the single laboratory validation of this immunological screening method, for this complex group of toxins with differing toxicities, according to the European Decision 2002/657/EC in conjunction with IUPAC and AOAC single laboratory validation guidelines. The different performance characteristics (detection capability CC beta, specificity/selectivity, repeatability, reproducibility, stability, and applicability) were determined in relation to the EU regulatory limit of 800 mu g of saxitoxin equivalents (STX eq) per kg of shellfish meat. The detection capability CC beta was calculated to be 120 mu g/kg. Intra-assay repeatability was found to be between 2.5 and 12.3% and interassay reproducibility was between 6.1 and 15.2% for different shellfish matrices. Natural samples were also evaluated and the resultant data displayed overall agreements of 96 and 92% with that of the existing AOAC approved methods of mouse bioassay (MBA) and high performance liquid chromatography (HPLC), respectively.
Resumo:
The potential for coupling technologies to deliver new, improved forms of bioanalysis is still in its infancy. We review a number of examples in which coupling has been successful, with special emphasis on combining surface-plasmon-resonance biosensors with mass spectrometry. We give an overview of current progress towards combining biosensor-based bioanalysis with chemical analysis for confirmation of paralytic shellfish poisons that are marine toxins. This comprehensive approach could be an alternative to the official methods currently used (e.g., animal testing and high-performance liquid chromatography with fluorescence detection) and could serve as a model for many more such applications. (C) 2009 Elsevier Ltd. All rights reserved.