84 resultados para surface acoustic wave (SAW)
Resumo:
The Solar Eclipse Corona Imaging System (SECIS) observed a strong 6-s oscillation in an active region coronal loop, during the 1999 August 11 total solar eclipse. In the present paper we show that this oscillation is associated with a fast-mode magneto-acoustic wave that travels through the loop apex with a velocity of 2100 km s-1. We use near-simultaneous SOHO observations to calculate the parameters of the loop and its surroundings such as density, temperature and their spatial variation. We find that the temporal evolution of the intensity is in agreement with the model of an impulsively generated, fast-mode wave.
Resumo:
The Nonlinear self-modulation of dust acoustic waves is studied in the presence of non-thermal (non-Maxwellian) ion and electron populations. By employing a multiple scale technique, a nonlinear Schrodinger-type equation (NLSE) is derived for the wave amplitude. The influence of non-thermality, in addition to obliqueness (between the propagation and modulation directions), on the conditions for modulational instability to occur is discussed. Different types of localized solutions (envelope excitations) which may possibly occur are discussed, and the dependence of their characteristics oil physical parameters is traced. The ion deviation from a Maxwellian distribution comes out to be more important than the electron analogous deviation alone. Both yield a de-stabilizing effect oil (the amplitude of) DAWs propagating in a dusty plasma with negative dust grains, and thus favour the formation of bright- (rather than dark-) type envelope structures, (solitons) in the plasma. A similar tendency towards amplitude de-stabilization is found for the ease of the presence of positively charged dust in the plasma.
Resumo:
A study is presented of the nonlinear self-modulation of low-frequency electrostatic (dust acoustic) waves propagating in a dusty plasma, in the presence of a superthermal ion (and Maxwellian electron) background. A kappa-type superthermal distribution is assumed for the ion component, accounting for an arbitrary deviation from Maxwellian equilibrium, parametrized via a real parameter kappa. The ordinary Maxwellian-background case is recovered for kappa ->infinity. By employing a multiple scales technique, a nonlinear Schrodinger-type equation (NLSE) is derived for the electric potential wave amplitude. Both dispersion and nonlinearity coefficients of the NLSE are explicit functions of the carrier wavenumber and of relevant physical parameters (background species density and temperature, as well as nonthermality, via kappa). The influence of plasma background superthermality on the growth rate of the modulational instability is discussed. The superthermal feature appears to control the occurrence of modulational instability, since the instability window is strongly modified. Localized wavepackets in the form of either bright-or dark-type envelope solitons, modeling envelope pulses or electric potential holes (voids), respectively, may occur. A parametric investigation indicates that the structural characteristics of these envelope excitations (width, amplitude) are affected by superthermality, as well as by relevant plasma parameters (dust concentration, ion temperature).
Resumo:
In this work, we have shown that a 100 MHz Love wave device can be used to determine whether room temperature ionic liquids (RTILs) are Newtonian fluids and have developed a technique that allows the determination of the density-viscosity product, rho eta of a Newtonian RTIL. In addition, a test for a Newtonian response was established by relating the phase change to insertion loss change. Five concentrations of a water-miscible RTIL and seven pure RTILs were measured. The changes in phase and insertion loss were found to vary linearly with the square root of the density-viscosity product for values up to (rho eta)(1/2) similar to 10 kg m(-2) s(-1/2). The square root of the density-viscosity product was deduced from the changes in either phase or insertion loss using glycerol as a calibration liquid. In both cases, the deduced values of rho eta agree well with those measured using viscosity and density meters. Miniaturization of the device, beyond that achievable with the lower-frequency quartz crystal microbalance approach, to measure smaller volumes is possible. The ability to fabricate Love wave and other surface acoustic wave sensors using planar metallization technologies gives potential for future integration into lab-on-a-chip analytical systems for characterizing ionic liquids.
Resumo:
Impulsively generated short-period fast magneto-acoustic wave trains, guided by solar and stellar coronal loops, are numerically modelled. In the developed stage of the evolution, the wave trains have a characteristic quasi-periodic signature. The quasi-periodicity results from the geometrical dispersion of the guided fast modes, determined by the transverse profile of the loop. A typical feature of the signature is a tadpole wavelet Spectrum: a narrow-spectrum tail precedes a broad-band head. The instantaneous period of the oscillations in the wave train decreases gradually with time. The period and the spectral amplitude evolution are shown to be determined by the steepness of the transverse density profile and the density contrast ratio in the loop. The propagating wave trains recently discovered with the Solar Eclipse Coronal Imaging System (SECIS) instrument are noted to have similar wavelet spectral features, which strengthens the interpretation of SECIS results as guided fast wave trains.
Resumo:
We provide the quantum-mechanical description of the excitation of surface plasmon polaritons on metal surfaces by single photons. An attenuated-reflection setup is described for the quantum excitation process in which we find remarkably efficient photon-to-surface plasmon wave-packet transfer. Using a fully quantized treatment of the fields, we introduce the Hamiltonian for their interaction and study the quantum statistics during transfer with and without losses in the metal.
Resumo:
A theoretical study is presented of the nonlinear amplitude modulation of waves propagating in unmagnetized plasmas contaminated by charged dust particles. Distinct well-known dusty plasma modes are explicitly considered, namely, the dust-acoustic wave, the dust-ion acoustic wave, and transverse dust-lattice waves. Using a multiple-scale technique, a nonlinear Schrodinger-type equation is derived, describing the evolution of the wave amplitude. A stability analysis reveals the possibility for modulational instability to occur, possibly leading to the formation of different types of envelope-localized excitations (solitary waves), under conditions which depend on the wave dispersion laws and intrinsic dusty plasma parameters.
Resumo:
A series of numerical simulations is presented, based on a recurrence-free Vlasov kinetic model using kinetic phase point trajectories. All plasma components are modeled kinetically via a Vlasov evolution equation, then coupled through Poisson’s equation. The dynamics of ion acoustic waves in an electron-ion and in a dusty (electron-ion-dust) plasma configuration are investigated, focusing on wave decay due to Landau damping and, in particular, on the parametric dependence of the damping rate on the dust concentration and on the electron-to-ion temperature ratio. In the absence of dust, the occurrence of damping was observed, as expected, and its dependence to the relative magnitude of the electron vs ion temperature(s) was investigated. When present, the dust component influences the charge balance, enabling dust-ion acoustic waves to survive Landau damping even in the extreme regime where Te???Ti. The Landau damping rate is shown to be minimized for a strong dust concentration or/and for a high value of the electron-to-ion temperature ratio. Our results confirm earlier theoretical considerations and contribute to the interpretation of experimental observations of dust-ion acoustic wave characteristics.
Resumo:
High time resolution observations of a white-light flare on the active star EQ PegB show evidence of intensity variations with a period of ≈10 s. The period drifts to longer values during the decay phase of the flare. If the oscillation is interpreted as an impulsively-excited, standing-acoustic wave in a flare loop, the period implies a loop length of ≈3.4 Mm and ≈6.8 Mm for the case of the fundamental mode and the second harmonic, respectively. However, the small loop lengths imply a very high modulation depth making the acoustic interpretation unlikely. A more realistic interpretation may be that of a fast-MHD wave, with the modulation of the emission being due to the magnetic field. Alternatively, the variations could be due to a series of reconnection events. The periodic signature may then arise as a result of the lateral separation of individual flare loops or current sheets with oscillatory dynamics (i.e., periodic reconnection).
Resumo:
Understanding how microorganisms influence the physical and chemical properties of the subsurface is hindered by our inability to observe microbial dynamics in real time and with high spatial resolution. Here, we investigate the use of noninvasive geophysical methods to monitor biomineralization at the laboratory scale during stimulated sulfate reduction under dynamic flow conditions. Alterations in sediment characteristics resulting from microbe-mediated sulfide mineral precipitation were concomitant with changes in complex resistivity and acoustic wave propagation signatures. The sequestration of zinc and iron in insoluble sulfides led to alterations in the ability of the pore fluid to conduct electrical charge and of the saturated sediments to dissipate acoustic energy. These changes resulted directly from the nucleation, growth, and development of nanoparticulate precipitates along grain surfaces and within the pore space. Scanning and transmission electron microscopy (SEM and TEM) confirmed the sulfides to be associated with cell surfaces, with precipitates ranging from aggregates of individual 3-5 nm nanocrystals to larger assemblages of up to 10-20 m in diameter. Anomalies in the geophysical data reflected the distribution of mineral precipitates and biomass over space and time, with temporal variations in the signals corresponding to changes in the aggregation state of the nanocrystalline sulfides. These results suggest the potential for using geophysical techniques to image certain subsurface biogeochemical processes, such as those accompanying the bioremediation of metal-contaminated aquifers.
Resumo:
The nonlinear dynamics of longitudinal dust lattice waves propagating in a dusty plasma bi-crystal is investigated. A “diatomic”-like one-dimensional dust lattice configuration is considered, consisting of two distinct dust grain species with different charges and masses. Two different frequency dispersion modes are obtained in the linear limit, namely, an optical and an acoustic wave dispersion branch. Nonlinear solitary wave solutions are shown to exist in both branches, by considering the continuum limit for lattice excitations in different nonlinear potential regimes. For this purpose, a generalized Boussinesq and an extended Korteweg de Vries equation is derived, for the acoustic mode excitations, and their exact soliton solutions are provided and compared. For the optic mode, a nonlinear Schrödinger-type equation is obtained, which is shown to possess bright- (dark-) type envelope soliton solutions in the long (short, respectively) wavelength range. Optic-type longitudinal wavepackets are shown to be generally unstable in the continuum limit, though this is shown not to be the rule in the general (discrete) case.
Resumo:
The flow of energy through the solar atmosphere and the heating of the Sun's outer regions are still not understood. Here, we report the detection of oscillatory phenomena associated with a large bright-point group that is 430,000 square kilometers in area and located near the solar disk center. Wavelet analysis reveals full-width half-maximum oscillations with periodicities ranging from 126 to 700 seconds originating above the bright point and significance levels exceeding 99%. These oscillations, 2.6 kilometers per second in amplitude, are coupled with chromospheric line-of-sight Doppler velocities with an average blue shift of 23 kilometers per second. A lack of cospatial intensity oscillations and transversal displacements rules out the presence of magneto-acoustic wave modes. The oscillations are a signature of Alfvén waves produced by a torsional twist of ±22 degrees. A phase shift of 180 degrees across the diameter of the bright point suggests that these torsional Alfvén oscillations are induced globally throughout the entire brightening. The energy flux associated with this wave mode is sufficient to heat the solar corona.
Resumo:
A new class of circularly polarized (CP) Fabry-Perot cavity antennas is introduced that maintain the simplicity of a linearly polarized primary feed and a single cavity structure. The proposed antennas employ a double-sided partially reflective surface (PRS), which allows independent control of the magnitude and phase responses for the reflection and transmission coefficients. In conjunction with an anisotropic high-impedance surface (HIS) ground plane, this arrangement allows for the first time a single cavity antenna to produce a specified gain in CP from a linearly polarized primary source. A design procedure for this class of antennas is introduced. The method exploits a simple ray optics model to calculate the magnitude and phase of the electric field in the cavity upon plane wave excitation. Based on this model, analytical expressions are derived, which enforce the resonance condition for both polarizations at a predetermined PRS reflectivity (and hence predetermined antenna gain) together with a 90 degrees differential phase between them. The validity of the concept is confirmed by means of an example entailing an antenna with gain of approximately 21 dB at 15 GHz. Full-wave simulation results and experimental testing on a fabricated prototype are presented and agree well with the theoretical predictions.
Resumo:
The collision of two plasma clouds at a speed that exceeds the ion acoustic speed can result in the formation of shocks. This phenomenon is observed not only in astrophysical scenarios, such as the propagation of supernova remnant (SNR) blast shells into the interstellar medium, but also in laboratory-based laser-plasma experiments. These experiments and supporting simulations are thus seen as an attractive platform for small-scale reproduction and study of astrophysical shocks in the laboratory. We model two plasma clouds, which consist of electrons and ions, with a 2D particle-in-cell simulation. The ion temperatures of both clouds differ by a factor of ten. Both clouds collide at a speed that is realistic for laboratory studies and for SNR shocks in their late evolution phase, like that of RCW86. A magnetic field, which is orthogonal to the simulation plane, has a strength that is comparable to that of SNR shocks. A forward shock forms between the overlap layer of both plasma clouds and the cloud with cooler ions. A large-amplitude ion acoustic wave is observed between the overlap layer and the cloud with hotter ions. It does not steepen into a reverse shock because its speed is below the ion acoustic speed. A gradient of the magnetic field amplitude builds up close to the forward shock as it compresses the magnetic field. This gradient gives rise to an electron drift that is fast enough to trigger an instability. Electrostatic ion acoustic wave turbulence develops ahead of the shock, widens its transition layer, and thermalizes the ions, but the forward shock remains intact. © 2014 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
Resumo:
A frequency selective surface (FSS) which exploits the dielectric anisotropy of liquid crystals to generate an electronically tunable bandpass filter response at D Band (110-170 GHz) is presented. The device consists of two printed arrays of slot elements which are separated by a 130-mu m thick layer of liquid crystals. A 3% shift in the filter passband occurs when the substrate permittivity is increased by applying a control signal of 10 V. Measured results show that the insertion loss increases from -3.7 dB to -10.4 dB at resonance (134 GHz), thus demonstrating the potential to create a FSS which can be switched between a transmitting and a reflecting structure.