35 resultados para stoichiometry
Resumo:
NADH:ubiquinone oxidoreductase (complex I) is the largest and most complicated enzyme of aerobic electron transfer. The mechanism how it uses redox energy to pump protons across the bioenergetic membrane is still not understood. Here we determined the pumping stoichiometry of mitochondrial complex I from the strictly aerobic yeast Yarrowia lipolytica. With intact mitochondria, the measured value of 3.8H(->+)/2e(-) indicated that four protons are pumped per NADH oxidized. For purified complex I reconstituted into proteoliposomes we measured a very similar pumping stoichiometry of 3.6H(->+)/2e(-). This is the first demonstration that the proton pump of complex I stayed fully functional after purification of the enzyme. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Nitochondrial NADH:ubiquinone-reductase (Complex I) catalyzes proton translocation into inside-out submitochondrial particles. Here we describe a method for determining the stoichiometric ratio (H) over right arrow (+)/2e(-) (n) for the coupled reaction of NADH oxidation by the quinone accepters. Comparison of the initial rates of NADH oxidation and alkalinization of the surrounding medium after addition of small amounts of NADH to coupled particles in the presence of Q(1) gives the value of n = 4. Thermally induced deactivation of Complex I [1, 2] results in complete inhibition of the NADH oxidase reaction but only partial inhibition of the NADH:Q(1)-reductase reaction. N-Ethylmaleimide (NEM) prevents reactivation and thus completely blocks the thermally deactivated enzyme. The residual NADH:Q(1)-reductase activity of the deactivated, NEM-treated enzyme is shown to be coupled with the transmembraneous proton translocation (n = 4). Thus, thermally induced deactivation of Complex 1 as well as specific inhibitors of the endogenous ubiquinone reduction (rotenone, piericidin A) do not inhibit the proton translocating activity of the enzyme.
Resumo:
Long-range strain fields associated with dislocation cores at an oxide interface are shown to be sufficient enough to create significant variations in the chemical composition around the core (Cottrell atmospheres). Such stress-assisted diffusion of cations towards the cores is proposed to significantly impact the properties of nanoscale functional devices. The figure shows a Z-contrast image of a single dislocation core at an oxide interface.
Resumo:
Depth-sensitive magnetic, structural and chemical characterization is important in the understanding and optimization of novel physical phenomena emerging at interfaces of transition metal oxide heterostructures. In a simultaneous approach we have used polarized neutron and resonant X-ray reflectometry to determine the magnetic profile across atomically sharp interfaces of ferromagnetic La0.67Sr0.33MnO3 / multiferroic BiFeO3 bi-layers with sub-nanometer resolution. In particular, the X-ray resonant magnetic reflectivity measurements at the Fe and Mn resonance edges allowed us to determine the element specific depth profile of the ferromagnetic moments in both the La0.67Sr0.33MnO3 and BiFeO3 layers. Our measurements indicate a magnetically diluted interface layer within the La0.67Sr0.33MnO3 layer, in contrast to previous observations on inversely deposited layers. Additional resonant X-ray reflection measurements indicate a region of an altered Mn- and O-content at the interface, with a thickness matching that of the magnetic diluted layer, as origin of the reduction of the magnetic moment.
Resumo:
The study of catalytic behavior begins with one seemingly simple process, namely the hydrogenation of O to H2O on platinum. Despite the apparent simplicity its mechanism has been much debated. We have used density functional theory with,gradient corrections to examine microscopic reaction pathways for several elementary steps implicated in this fundamental catalytic process. We find that H2O formation from chemisorbed O and H atoms is a highly activated process. The largest barrier along this route, with a value of similar to1 eV, is the addition of the first H to O to produce OH. Once formed, however, OH groups are easily hydrogenated to H2O with a barrier of similar to0.2 eV. Disproportionation reactions with 1:1 and 2:1 stoichiometries of H2O and O have been examined as alternative routes for OH formation. Both stoichiometries of reaction produce OH groups with barriers that are much lower than that associated with the O + H reaction. H2O, therefore, acts as an autocatalyst in the overall H O formation process. Disproportionation with a 2:1 stoichiometry is thermodynamically and kinetically favored over disproportionation with a l:I stoichiometry. This highlights an additional (promotional) role of the second H2O molecule in this process. In support of our previous suggestion that the key intermediate in the low-temperature H2O formation reaction is a mixed OH and H2O overlayer we find that then is a very large barrier for the dissociation of the second H2O molecule in the 2:1 disproportionation process. We suggest that the proposed intermediate is then hydrogenated to H2O through a very facile proton transfer mechanism.
Resumo:
A broad survey of harmonic dynamics in AB(2) clusters with up to N = 3000 atoms is performed using a simple rigid ion model, with ionic radii selected to give rutile as the ground state structure for the corresponding extended crystal. The vibrational density of states is already close to its bulk counterpart for N similar to 500, with characteristic differences due to surfaces, edges and vertices. Two methods are proposed and tested to map the cluster vibrational states onto the rutile crystal phonons. The net distinction between infrared (IR) active and Raman active modes that exists for bulk rutile becomes more and more blurred as the cluster size is reduced. It is found that, in general, the higher the IR activity of the mode, the more this is affected by the system size. IR active modes are found to spread over a wide frequency range for the finite clusters. Simple models based on either a crude confinement constraint or surface pressure arguments fail to reproduce the results of the calculations. The effects of the stoichiometry and dielectric properties of the surrounding medium on the vibrational properties of the clusters are also investigated.
Resumo:
Septins are an evolutionarily conserved group of GTP-binding and filament-forming proteins that belong to the large superclass of P-loop GTPases. While originally discovered in yeast as cell division cycle mutants with cytokinesis defects, they are now known to have diverse cellular roles which include polarity determination, cytoskeletal reorganization, membrane dynamics, vesicle trafficking, and exocytosis. Septin proteins form homo- and hetero-oligomeric polymers which can assemble into higher-order filaments. They are also known to interact with components of the cytoskeleton, ie actin and tubulin. The precise role of GTP binding is not clear but a current model suggests that it is associated with conformational changes which alter binding to other proteins. There are at least 12 human septin genes, and although information on expression patterns is limited, most undergo complex alternative splicing with some degree of tissue specificity. Nevertheless, an increasing body of data implicates the septin family in the pathogenesis of diverse disease states including neoplasia, neurodegenerative conditions, and infections. Here the known biochemical properties of mammalian septins are reviewed in the light of the data from yeast and other model organisms. The data implicating septins in human disease are considered and a model linking these data is proposed. It is posited that septins can act as regulatable scaffolds where the stoichiometry of septin associations, modifications, GTP status, and the interactions with other proteins allow the regulation of key cellular processes including polarity determination. Derangements of such septin scaffolds thus explain the role of septins in disease states. Copyright © 2004 Pathological Society of Great Britain and Ireland.
Resumo:
The first definitive high-resolution single-crystal X-ray structure for the coordination of the 1-methylimidazole (Meimid) ligand to UO2(Ac)2 (Ac = CH3CO2) is reported. The crystal structure evidence is confirmed by IR, Raman, and UV-vis spectroscopic data. Direct participation of the nitrogen atom of the Meimid ligand in binding to the uranium center is confirmed. Structural analysis at the DFT (B3LYP) level of theory showed a conformational difference of the Meimid ligand in the free gas-phase complex versus the solid state due to small energetic differences and crystal packing effects. Energetic analysis at the MP2 level in the gas phase supported stronger Meimid binding over H2O binding to both UO2(Ac)2 and UO2(NO3)2. In addition, self-consistent reaction field COSMO calculations were used to assess the aqueous phase energetics of combination and displacement reactions involving H2O and Meimid ligands to UO2R2 (R = Ac, NO3). For both UO2(NO3)2 and UO2(Ac)2, the displacement of H2O by Meimid was predicted to be energetically favorable, consistent with experimental results that suggest Meimid may bind uranyl at physiological pH. Also, log(Knitrate/KAc) calculations supported experimental evidence that the binding stoichiometry of the Meimid ligand is dependent upon the nature of the reactant uranyl complex. These results clearly demonstrate that imidazole binds to uranyl and suggest that binding of histidine residues to uranyl could occur under normal biological conditions.
Resumo:
A conventional thin film capacitor heterostructure, consisting of sol-gel deposited lead zirconium titanate (PZT) layers with sputtered platinum top and bottom electrodes, was subjected to fatiguing pulses at a variety of frequencies. The fatigue characteristics were compared to those of a similarly processed capacitor in which a ~20nm tungsten trioxide layer had been deposited, using pulsed laser deposition, between the ferroelectric and upper electrode. The expectation was that, because of its ability to accommodate considerable oxygen non-stoichiometry, tungsten trioxide (WO3) might act as an efficient sink for any oxygen vacancies flushed to the electrode-ferroelectric boundary layer during repetitive switching, and hence would improve the fatigue characteristics of the thin film capacitor. However, it was found that, in general, the addition of tungsten trioxide actually increases the rate of fatigue. It appears that any potential benefit from the WO3, in terms of absorbing oxygen vacancies, is far outweighed by it causing dramatically increased charge injection in the system.
Resumo:
Proton pumping respiratory complex I (NADH: ubiquinone oxidoreductase) is a major component of the oxidative phosphorylation system in mitochondria and many bacteria. In mammalian cells it provides 40% of the proton motive force needed to make ATP. Defects in this giant and most complicated membrane-bound enzyme cause numerous human disorders. Yet the mechanism of complex I is still elusive. A group exhibiting redox-linked protonation that is associated with iron-sulfur cluster N2 of complex I has been proposed to act as a central component of the proton pumping machinery. Here we show that a histidine in the 49-kDa subunit that resides near iron-sulfur cluster N2 confers this redox-Bohr effect. Mutating this residue to methionine in complex I from Yarrowia lipolytica resulted in a marked shift of the redox midpoint potential of iron-sulfur cluster N2 to the negative and abolished the redox-Bohr effect. However, the mutation did not significantly affect the catalytic activity of complex I and protons were pumped with an unchanged stoichiometry of 4 H+/2e(-). This finding has significant implications on the discussion about possible proton pumping mechanism for complex I.
Resumo:
A one-pot sol-gel synthesis method has been developed for the incorporation of metal nanoparticles into mesoporous oxide thin films deposited on various plane substrates by spin-coating and on the inner surface of fused silica capillaries by dip-coating. The size, the metal loading and the stoichiometry of the metal nanoparticles could be precisely controlled by following this methodology. In the first step, polymer stabilized Pt50Sn50 and Pt90Sn10 nanoparticles were obtained by a solvent-reduction method. Then, the nanoparticles were added to a metal oxide precursor sol, which was destabilized by solvent evaporation. After calcination, the obtained materials were tested in the hydrogenation of citral in both batch and continuous modes. The highest selectivity of 30% towards the unsaturated alcohols was obtained over supported Pt90Sn10 nanoparticles with a preferential formation of the cis-isomer (nerol) due to a unique confinement of the bimetallic nanoparticles in the mesoporous framework. The selectivity towards the unsaturated alcohols was further improved to 56% over the PtRu5Sn nanoparticles supported by impregnation onto mesoporous silica films. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The kinetics of oxidative dissolution of a number of different samples of chromium(III) oxide by periodate ions in 1 mol dm-3 HClO4 solution have been studied and the results interpreted using the inverse-cubic rate law. The metaperiodate acts as a two-electron oxidant and the overall reaction stoichiometry involves the reaction of 3 mol of periodate with 1 mol of Cr(III) oxide. From a detailed study of the kinetics of dissolution the rate-determining step appears to be the reaction between an adsorbed periodate ion and its associated Cr(III) oxide surface site, with inhibition by one of the reaction products, iodate, through competitive adsorption. Analysis of the kinetic data generates values for the Langmuir adsorption coefficients for periodate and iodate ions on highly hydrated Cr(III) oxide of 84 +/- 8 and 2600 +/- 370 dm3 mol-1, respectively. The Cr(III) oxide-periodate reaction has a high overall activation energy, 82 +/- 6 kJ mol-1. The kinetics of dissolution of highly hydrated Cr(III) oxide under conditions in which the simple inverse-cubic rate law function does not apply can be successfully predicted using a simple kinetic model.
Resumo:
High-quality luminescent thin films of strontium sulphide (SrS) with excellent stoichiometry have been grown by pulsed-laser deposition. The crystallinity, stoichiometry and cathodoluminescence (CL) have been investigated for the films deposited onto two differently coated glass substrates. Furthermore the importance of post-deposition annealing has been studied. SrS thin films grown at 450 degrees C onto glass substrates coated with tin-doped indium oxide show good crystallinity, with a preferred orientation along the (200) axis. Cerium-doped SrS (SrS:Ce) gives a strong blue CL output at 400 nm. Energy-dispersive X-ray spectroscopy shows that the films are stoichiometric and that the stoichiometry is controllable by varying deposition parameters.