5 resultados para stochastic modeling
Resumo:
Stochastic modeling of mortality rates focuses on fitting linear models to logarithmically adjusted mortality data from the middle or late ages. Whilst this modeling enables insurers to project mortality rates and hence price mortality products it does not provide good fit for younger aged mortality. Mortality rates below the early 20's are important to model as they give an insight into estimates of the cohort effect for more recent years of birth. It is also important given the cumulative nature of life expectancy to be able to forecast mortality improvements at all ages. When we attempt to fit existing models to a wider age range, 5-89, rather than 20-89 or 50-89, their weaknesses are revealed as the results are not satisfactory. The linear innovations in existing models are not flexible enough to capture the non-linear profile of mortality rates that we see at the lower ages. In this paper we modify an existing 4 factor model of mortality to enable better fitting to a wider age range, and using data from seven developed countries our empirical results show that the proposed model has a better fit to the actual data, is robust, and has good forecasting ability.
Resumo:
Healthcare providers are under increased pressure to ensure that the quality
of care delivered to patients are off the highest standard. Modelling quality of
care is difficult due to the many ways of defining it. This paper introduces a potential
model which could be used to take quality of care into account when modelling
length of stay. The Coxian phase-type distribution is used to model length of stay
and quality of care incorporated into this using a Hidden Markov model. This model
is then applied to
Resumo:
We propose a new approach for modeling nonlinear multivariate interest rate processes based on time-varying copulas and reducible stochastic differential equations (SDEs). In the modeling of the marginal processes, we consider a class of nonlinear SDEs that are reducible to Ornstein--Uhlenbeck (OU) process or Cox, Ingersoll, and Ross (1985) (CIR) process. The reducibility is achieved via a nonlinear transformation function. The main advantage of this approach is that these SDEs can account for nonlinear features, observed in short-term interest rate series, while at the same time leading to exact discretization and closed-form likelihood functions. Although a rich set of specifications may be entertained, our exposition focuses on a couple of nonlinear constant elasticity volatility (CEV) processes, denoted as OU-CEV and CIR-CEV, respectively. These two processes encompass a number of existing models that have closed-form likelihood functions. The transition density, the conditional distribution function, and the steady-state density function are derived in closed form as well as the conditional and unconditional moments for both processes. In order to obtain a more flexible functional form over time, we allow the transformation function to be time varying. Results from our study of U.S. and UK short-term interest rates suggest that the new models outperform existing parametric models with closed-form likelihood functions. We also find the time-varying effects in the transformation functions statistically significant. To examine the joint behavior of interest rate series, we propose flexible nonlinear multivariate models by joining univariate nonlinear processes via appropriate copulas. We study the conditional dependence structure of the two rates using Patton (2006a) time-varying symmetrized Joe--Clayton copula. We find evidence of asymmetric dependence between the two rates, and that the level of dependence is positively related to the level of the two rates. (JEL: C13, C32, G12) Copyright The Author 2010. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oxfordjournals.org, Oxford University Press.