216 resultados para stereotactic radiotherapy
Resumo:
Stereotactic body radiotherapy (SBRT) is now an established therapy in stage I lung cancer with comparable local control rates to surgical resection. Owing to the conformity of treatment dose delivery and with appropriate fractionation considerations, minimal side-effects to surrounding normal tissues are observed in most patients. SBRT is now being used in the treatment of oligometastatic disease, alone or alongside systemic therapy. At present there is a paucity of evidence available showing a clinical benefit, but several international studies are being set-up or have started recruitment. This overview considers the clinical entity of an oligometastatic state, discusses the role of SBRT in the management of oligometastatic disease and discusses potential novel therapy combinations with SBRT.
Resumo:
Intrafraction tumour motion is an issue that is of increased interest in the era of image-guided radiotherapy. It is particularly relevant for non-small cell lung cancer, for which a number of recent developments are in use to aid with motion management in the delivery of radical radiotherapy. The ability to deliver hypofractionated ablative doses, such as in stereotactic radiotherapy, has been aided by improvements in the ability to analyse tumour motion and amend treatment delivery. In addition, accounting for tumour motion can enable dose escalation to occur by reducing the normal tissue being irradiated by virtue of a reduction in target volumes. Motion management for lung tumours incorporates five key components: imaging, breath-hold techniques, abdominal compression, respiratory tracking and respiratory gating. These will be described, together with the relevant benefits and associated complexities. Many studies have described improved dosimetric coverage and reduced normal tissue complication probability rates when using motion management techniques. Despite the widespread uptake of many of these techniques, there is a paucity of literature reporting improved outcome in overall survival and local control for patients whenever motion management techniques are used. This overview will review the extent of lung tumour motion, ways in which motion is detected and summarise the key methods used in motion management.
Resumo:
Radiotherapy is commonly planned on the basis of physical dose received by the tumour and surrounding normal tissue, with margins added to address the possibility of geometric miss. However, recent experimental evidence suggests that intercellular signalling results in a given cell's survival also depending on the dose received by neighbouring cells. A model of radiation-induced cell killing and signalling was used to analyse how this effect depends on dose and margin choices. Effective Uniform Doses were calculated for model tumours in both idealised cases with no delivery uncertainty and more realistic cases incorporating geometric uncertainty. In highly conformal irradiation, a lack of signalling from outside the target leads to reduced target cell killing, equivalent to under-dosing by up to 10% compared to large uniform fields. This effect is significantly reduced when higher doses per fraction are considered, both increasing the level of cell killing and reducing margin sensitivity. These effects may limit the achievable biological precision of techniques such as stereotactic radiotherapy even in the absence of geometric uncertainties, although it is predicted that larger fraction sizes reduce the relative contribution of cell signalling driven effects. These observations may contribute to understanding the efficacy of hypo-fractionated radiotherapy.
Resumo:
Image guided radiotherapy (IGRT) is an essential tool in the accurate delivery of modern radiotherapy techniques. Prostate radiotherapy positioned using skin marks or bony anatomy may be adequate for delivering a relatively homogenous whole pelvic radiotherapy dose but these are not reliable when using reduced margins, dose escalation or hypo-fractionated stereotactic radiotherapy. Fiducial markers (FMs) for prostate IGRT have been in use since the 1990's. They require surgical implantation and provide a surrogate for the position of the prostate gland. A variety of FMs are available and they can be used in a number of ways. This review aims to establish the evidence for using prostate FMs in terms of feasibility, implantation procedures, types of FMs used, FM migration, imaging modalities used and the clinical impact of FMs. A search strategy was defined and a literature search was carried out in Medline. Inclusion and exclusion criteria were applied which resulted in 50 papers being included in this review. The evidence demonstrates that FMs provide a more accurate surrogate for the position of the prostate than either external skin marks or bony anatomy. A combination of FM alignment and soft tissue analysis is currently the most effective and widely available approach to ensuring accuracy in prostate IGRT. FM implantation is safe and well tolerated. FM migration is possible but minimal. Standardisation of all techniques and procedures in relation to the use of prostate FMs is required. Finally a clinical trial investigating a non-surgical alternative to prostate FMS is introduced.
Resumo:
Purpose: To evaluate the clinical and histological side effects of a prototype stereotactic radiotherapy system delivering microcollimated external beam radiation through pars plana in porcine eyes.
Methods: Five Yucatan mini-swine (10 eyes) were randomized to five treatment groups. Eight eyes were dosed with X-ray radiation on Day 1, and two eyes served as untreated controls. Treated eyes received doses up to 60 Gy to the retina and up to 130 Gy to the sclera using single or overlapping beams. The treatment beams were highly collimated such that the diameter was approximately 2.5 mm on the sclera and 3 mm on the retinal surface. Fundus photography, fluorescein angiography (FA), and spectral domain optical coherence tomography (SD-OCT) were obtained on days 7, 30, 60, and 110. Images were examined by a masked grader and evaluated for abnormalities. Animals were sacrificed on day 111 and gross and histopathological analysis was conducted.
Results: Histological and gross changes to eye structures including conjunctiva and lens were minimal at all doses. Fundus, FA, and SD-OCT of the targeted region failed to disclose any abnormality in the control or 21 Gy treated animals. In the 42 and 60 Gy animals, hypopigmented spots were noted after treatment on clinical exam, and corresponding hyperfluorescent staining was seen in late frames. No evidence of choroidal hypoperfusion was seen. The histological specimens from the 60 Gy animals showed photoreceptor loss and displacement of cone nuclei.
Conclusion: Transcleral stereotactic radiation dosing in porcine eyes can be accomplished with no significant adverse events as doses less than 42 Gy.
Resumo:
Biological dose escalation through stereotactic ablative radiotherapy (SABR) holds promise of improved patient convenience, system capacity and tumor control with decreased cost and side effects. The objectives are to report the toxicities, biochemical and pathologic outcomes of this prospective study.
Resumo:
Aims: High local control rates are achieved in stage I lung cancer using stereotactic ablative radiotherapy. Target delineation is commonly based on four-dimensional computed tomography (CT) scans. Target volumes defined by positron emission tomography/computed tomography (PET/CT) are compared with those defined by four-dimensional CT and conventional ('three-dimensional') F-fluorodeoxyglucose (F-FDG) PET/CT. Materials and methods: For 16 stage I non-small cell lung cancer tumours, six approaches for deriving PET target volumes were evaluated: manual contouring, standardised uptake value (SUV) absolute threshold of 2.5, 35% of maximum SUV (35%SUV), 41% of SUV (41%SUV) and two different source to background ratio techniques (SBR-1 and SBR-2). PET-derived target volumes were compared with the internal target volume (ITV) from the modified maximum intensity projection (MIP ITV). Volumetric and positional correlation was assessed using the Dice similarity coefficient (DSC). Results: PET-based target volumes did not correspond to four-dimensional CT-based target volumes. The mean DSC relative to MIP ITV were: PET manual = 0.64, SUV2.5 = 0.64, 35%SUV = 0.63, 41%SUV = 0.57. SBR-1 = 0.52, SBR-2 = 0.49. PET-based target volumes were smaller than corresponding MIP ITVs. Conclusions: Conventional three-dimensional F-FDG PET-derived target volumes for lung stereotactic ablative radiotherapy did not correspond well with those derived from four-dimensional CT, including those in routine clinical use (MIP ITV). Caution is required in using three-dimensional PET for motion encompassing target volume delineation. © 2012 The Royal College of Radiologists.
Resumo:
AIMS: High local control rates are achieved in stage I lung cancer using
stereotactic ablative radiotherapy. Target delineation is commonly based on
four-dimensional computed tomography (CT) scans. Target volumes defined by
positron emission tomography/computed tomography (PET/CT) are compared with those defined by four-dimensional CT and conventional ('three-dimensional')
(18)F-fluorodeoxyglucose ((18)F-FDG) PET/CT.
MATERIALS AND METHODS: For 16 stage I non-small cell lung cancer tumours, six
approaches for deriving PET target volumes were evaluated: manual contouring,
standardised uptake value (SUV) absolute threshold of 2.5, 35% of maximum SUV
(35%SUV(MAX)), 41% of SUV(MAX) (41%SUV(MAX)) and two different source to
background ratio techniques (SBR-1 and SBR-2). PET-derived target volumes were compared with the internal target volume (ITV) from the modified maximum
intensity projection (MIP(MOD) ITV). Volumetric and positional correlation was
assessed using the Dice similarity coefficient (DSC).
RESULTS: PET-based target volumes did not correspond to four-dimensional CT-based target volumes. The mean DSC relative to MIP(MOD) ITV were: PET manual = 0.64, SUV2.5 = 0.64, 35%SUV(MAX) = 0.63, 41%SUV(MAX) = 0.57. SBR-1 = 0.52, SBR-2 =0.49. PET-based target volumes were smaller than corresponding MIP ITVs.
CONCLUSIONS: Conventional three-dimensional (18)F-FDG PET-derived target volumes for lung stereotactic ablative radiotherapy did not correspond well with those derived from four-dimensional CT, including those in routine clinical use
(MIP(MOD) ITV). Caution is required in using three-dimensional PET for motion
encompassing target volume delineation.
Resumo:
AIMS: To determine the incidence and predictive factors of rib fracture and chest wall pain after lung stereotactic ablative radiotherapy (SABR).
MATERIALS AND METHODS: Patients were treated with lung SABR of 48-60 Gy in four to five fractions. The treatment plan and follow-up computed tomography scans of 289 tumours in 239 patients were reviewed. Dose-volume histogram (DVH) metrics and clinical factors were evaluated as potential predictors of chest wall toxicity.
RESULTS: The median follow-up was 21.0 months (range 6.2-52.1). Seventeen per cent (50/289) developed a rib fracture, 44% (22/50) were symptomatic; the median time to fracture was 16.4 months. On univariate analysis, female gender, osteoporosis, tumours adjacent (within 5 mm) to the chest wall and all of the chest wall DVH metrics predicted for rib fracture, but only tumour location adjacent to the chest wall remained significant on the multivariate model (P < 0.01). The 2 year fracture-free probability for those adjacent to the chest wall was 65.6%. Among those tumours adjacent to the chest wall, only osteoporosis (P = 0.02) predicted for fracture, whereas none of the chest wall DVH metrics were predictive. Eight per cent (24/289) experienced chest wall pain without fracture.
CONCLUSIONS: None of the chest wall DVH metrics independently predicted for SABR-induced rib fracture when tumour location is taken into account. Patients with tumours adjacent (within 5 mm) to the chest wall are at greater risk of rib fracture after lung SABR, and among these, an additional risk was observed in osteoporotic patients.
Resumo:
AIMS: We report the outcomes of a large lung stereotactic ablative body radiotherapy (SABR) programme for primary non-small cell lung cancer (NSCLC) and pulmonary metastases. The primary study aim was to identify factors predictive for local control.
MATERIALS AND METHODS: In total, 311 pulmonary tumours in 254 patients were treated between 2008 and 2011 with SABR using 48-60 Gy in four to five fractions. Local, regional and distant failure data were collected prospectively, whereas other end points were collected retrospectively. Potential clinical and dosimetric predictors of local control were evaluated using univariate and multivariate analyses.
RESULTS: Of the 311 tumours, 240 were NSCLC and 71 were other histologies. The 2 year local control rate was 96% in stage I NSCLC, 76% in colorectal cancer (CRC) metastases and 91% in non-lung/non-CRC metastases. Predictors of better local control on multivariate analysis were non-CRC tumours and a larger proportion of the planning target volume (PTV) receiving ≥100% of the prescribed dose (higher PTV V100). Among the 45 CRC metastases, a higher PTV V100 and previous chemotherapy predicted for better local control.
CONCLUSIONS: Lung SABR of 48-60 Gy/four to five fractions resulted in high local control rates for all tumours except CRC metastases. Covering more of the PTV with the prescription dose (a higher PTV V100) also resulted in superior local control.
Resumo:
BACKGROUND AND PURPOSE: Stereotactic ablative radiotherapy (SABR) has become standard for inoperable early-stage non-small cell lung cancer (NSCLC). However, there is no randomized evidence demonstrating benefit over more fractionated radiotherapy. We compared accelerated hypofractionation (AH) and SABR using a propensity score-matched analysis.
MATERIALS AND METHODS: From 1997-2007, 119 patients (T1-3N0M0 NSCLC) were treated with AH (48-60Gy, 12-15 fractions). Prior to SABR, this represented our institutional standard. From 2008-2012, 192 patients (T1-3N0M0 NSCLC) were treated with SABR (48-52Gy, 4-5 fractions). A total of 114 patients (57 per cohort) were matched (1:1 ratio, caliper: 0.10) using propensity scores.
RESULTS: Median follow-up (range) for the AH cohort was 36.3 (2.5-109.1) months, while that for the SABR group was 32.5 (0.3-62.6)months. Three-year overall survival (OS) and local control (LC) rates were 49.5% vs. 72.4% [p=0.024; hazard ratio (HR): 2.33 (1.28, 4.23), p=0.006] and 71.9% vs. 89.3% [p=0.077; HR: 5.56 (1.53, 20.2), p=0.009], respectively. On multivariable analysis, tumour diameter and PET staging were predictive for OS, while the only predictive factor for LC was treatment cohort.
CONCLUSIONS: OS and LC were improved with SABR, although OS is more closely related to non-treatment factors. This represents one of the few studies comparing AH to SABR for early-stage lung cancer.
Resumo:
Abstract
PURPOSE:
The optimal duration over which lung SBRT should be delivered is unknown. We conducted a randomized pilot study in patients treated with four fractions of lung SBRT delivered over 4 or over 11days.
METHODS:
Patients with a peripheral solitary lung tumor (NSCLC or pulmonary metastasis) ?5cm were eligible. For NSCLC lung tumors ?3cm, a dose of 48Gy in 4 fractions was used, otherwise 52Gy in 4 fractions was delivered. Patients were randomized to receive treatment over 4 consecutive days or over 11days. The primary end-point was acute grade ?2 toxicity. Secondary end-points included quality of life (QOL) assessed using the EORTC QLQ-C30 and QLQ-LC13 questionnaires.
RESULTS:
Fifty four patients were enrolled. More patients in the 11day group had respiratory symptoms at baseline. 55.6% patients treated over 4days and 33.3% of patients treated over 11days experienced acute grade ?2 toxicity (p=0.085). Dyspnea, fatigue and coughing domains were worse in the 11day group at baseline. At 1 and 4months, more patients in the 4day group experienced a clinically meaningful worsening in the dyspnea QOL domain compared to the 11day group (44.5% vs 15.4%, p=0.02; 38.5% vs 12.0%, p=0.03, respectively). However, raw QOL scores were not different at these time-points between treatment groups.
CONCLUSIONS:
Grade 2 or higher acute toxicity was more common in the 4day group, approaching statistical significance. More patients treated on 4 consecutive days reported a clinically meaningful increase in dyspnea, although interpretation of these results is challenging due to baseline imbalance between treatment groups. Larger studies are required to validate these results.
Visual functioning and quality of life in the subfoveal radiotherapy study (SFRADS): SFRADS report 2
Resumo:
Aims: To determine whether or not self reported visual functioning and quality of life in patients with choroidal neovascularisation caused by age related macular degeneration (AMD) is better in those treated with 12 Gy external beam radiotherapy in comparison with untreated subjects. Methods: A multicentre single masked randomised controlled trial of 12 Gy of external beam radiation therapy (EBRT) delivered as 6x2 Gy fractions to the macula of an affected eye versus observation. Patients with AMD, aged 60 years or over, in three UK hospital units, who had subfoveal CNV and a visual acuity equal to or better than 6/60 (logMAR 1.0). Methods: Data from 199 eligible participants who were randomly assigned to 12 Gy teletherapy or observation were available for analysis. Visual function assessment, ophthalmic examination, and fundus fluorescein angiography were undertaken at baseline and at 3, 6, 12, and 24 months after study entry. To assess patient centred outcomes, subjects were asked to complete the Daily Living Tasks Dependent on Vision (DLTV) and the SF-36 questionnaires at baseline, 6, 12, and 24 months after enrolment to the study. Cross sectional and longitudinal analyses were conducted using arm of study as grouping variable. Regression analysis was employed to adjust for the effect of baseline co-variates on outcome at 12 months and 24 months. Results: Both control and treated subjects had significant losses in visual functioning as seen by a progressive decline in mean scores in the four dimensions of the DLTV. There were no statistically significant differences between treatment and control subjects in any of dimensions of the DLTV at 12 months or 24 months after study entry. Regression analysis confirmed that treatment status had no effect on the change in DLTV dimensional scores. Conclusions: The small benefits noted in clinical measures of vision in treated eyes did not translate into better self reported visual functioning in patients who received treatment when compared with the control arm. These findings have implications for the design of future clinical trials and studies.