7 resultados para stars: binaries: close


Relevância:

90.00% 90.00%

Publicador:

Resumo:

We hypothesize that at least some of the recently discovered class of calcium-rich gap transients are tidal detonation events of white dwarfs (WDs) by black holes (BHs) or possibly neutron stars. We show that the properties of the calcium-rich gap transients agree well with the predictions of the tidal detonation model. Under the predictions of this model, we use a follow-up X-ray observation of one of these transients, SN 2012hn, to place weak upper limits on the detonator mass of this system that include all intermediate-mass BHs (IMBHs). As these transients are preferentially in the stellar haloes of galaxies, we discuss the possibility that these transients are tidal detonations of WDs caused by random flyby encounters with IMBHs in dwarf galaxies or globular clusters. This possibility has been already suggested in the literature but without connection to the calcium-rich gap transients. In order for the random flyby cross-section to be high enough, these events would have to be occurring inside these dense stellar associations. However, there is a lack of evidence for IMBHs in these systems, and recent observations have ruled out all but the very faintest dwarf galaxies and globular clusters for a few of these transients. Another possibility is that these are tidal detonations caused by three-body interactions, where a WD is perturbed towards the detonator in isolated multiple star systems. We highlight a number of ways this could occur, even in lower mass systems with stellar-mass BHs or neutron stars. Finally, we outline several new observational tests of this scenario, which are feasible with current instrumentation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Aims: We investigate the characteristics of two newly discovered short-period, double-lined, massive binary systems in the Large Magellanic Cloud, VFTS 450 (O9.7 II-Ib + O7::) and VFTS 652 (B1 Ib + O9: III:). 

Methods: We perform model-atmosphere analyses to characterise the photospheric properties of both members of each binary (denoting the "primary" as the spectroscopically more conspicuous component). Radial velocities and optical photometry are used to estimate the binary-system parameters. 

Results: We estimate Teff = 27 kK, log g = 2.9 (cgs) for the VFTS 450 primary spectrum (34 kK, 3.6: for the secondary spectrum); and Teff = 22 kK, log g = 2.8 for the VFTS 652 primary spectrum (35 kK, 3.7: for the secondary spectrum). Both primaries show surface nitrogen enrichments (of more than 1 dex for VFTS 652), and probable moderate oxygen depletions relative to reference LMC abundances. We determine orbital periods of 6.89 d and 8.59 d for VFTS 450 and VFTS 652, respectively, and argue that the primaries must be close to filling their Roche lobes. Supposing this to be the case, we estimate component masses in the range ∼20-50 M

Conclusions: The secondary spectra are associated with the more massive components, suggesting that both systems are high-mass analogues of classical Algol systems, undergoing case-A mass transfer. Difficulties in reconciling the spectroscopic analyses with the light-curves and with evolutionary considerations suggest that the secondary spectra are contaminated by (or arise in) accretion disks.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Rotation is a key parameter in the evolution of massive stars, affecting their evolution, chemical yields, ionizing photon budget, and final fate. We determined the projected rotational velocity, υ e sin i, of ~330 O-type objects, i.e. ~210 spectroscopic single stars and ~110 primaries in binary systems, in the Tarantula nebula or 30 Doradus (30 Dor) region. The observations were taken using VLT/FLAMES and constitute the largest homogeneous dataset of multi-epoch spectroscopy of O-type stars currently available. The most distinctive feature of the υ e sin i distributions of the presumed-single stars and primaries in 30 Dor is a low-velocity peak at around 100 km s-1. Stellar winds are not expected to have spun-down the bulk of the stars significantly since their arrival on the main sequence and therefore the peak in the single star sample is likely to represent the outcome of the formation process. Whereas the spin distribution of presumed-single stars shows a well developed tail of stars rotating more rapidly than 300 km s-1, the sample of primaries does not feature such a high-velocity tail. The tail of the presumed-single star distribution is attributed for the most part - and could potentially be completely due - to spun-up binary products that appear as single stars or that have merged. This would be consistent with the lack of such post-interaction products in the binary sample, that is expected to be dominated by pre-interaction systems. The peak in this distribution is broader and is shifted toward somewhat higher spin rates compared to the distribution of presumed-single stars. Systems displaying large radial velocity variations, typical for short period systems, appear mostly responsible for these differences.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Context: The initial distribution of spin rates of massive stars is a fingerprint of their elusive formation process. It also sets a key initial condition for stellar evolution and is thus an important ingredient in stellar population synthesis. So far, most studies have focused on single stars. Most O stars are, however, found in multiple systems. 

Aims: By establishing the spin-rate distribution of a sizeable sample of O-type spectroscopic binaries and by comparing the distributions of binary subpopulations with one another and with that of presumed-single stars in the same region, we aim to constrain the initial spin distribution of O stars in binaries, and to identify signatures of the physical mechanisms that affect the evolution of the spin rates of massive stars. 

Methods: We use ground-based optical spectroscopy obtained in the framework of the VLT-FLAMES Tarantula Survey (VFTS) to establish the projected equatorial rotational velocities (νesini) for components of 114 spectroscopic binaries in 30 Doradus. The νesini values are derived from the full width at half maximum (FWHM) of a set of spectral lines, using a FWHM vs. νesini calibration that we derive based on previous line analysis methods applied to single O-type stars in the VFTS sample. 

Results: The overall νesini distribution of the primary stars resembles that of single O-type stars in the VFTS, featuring a low-velocity peak (at νesini<200 kms-1) and a shoulder at intermediate velocities (200 <νesini<300 kms-1). The distributions of binaries and single stars, however, differ in two ways. First, the main peak at νesini ~ 100kms-1 is broader and slightly shifted towards higher spin rates in the binary distribution than that of the presumed-single stars. This shift is mostly due to short-period binaries (Porb~<10 d). Second, the νesini distribution of primaries lacks a significant population of stars spinning faster than 300 kms-1, while such a population is clearly present in the single-star sample. The νesini distribution of binaries with amplitudes of radial velocity variation in the range of 20 to 200 kms-1 (mostly binaries with Porb ~ 10-1000 d and/or with q<0.5) is similar to that of single O stars below νesini~<170kms-1

Conclusions: Our results are compatible with the assumption that binary components formed with the same spin distribution as single stars, and that this distribution contains few or no fast-spinning stars. The higher average spin rate of stars in short-period binaries may either be explained by spin-up through tides in such tight binary systems, or by spin-down of a fraction of the presumed-single stars and long-period binaries through magnetic braking (or by a combination of both mechanisms). Most primaries and secondaries of SB2 systems with Porb~<10 d appear to have similar rotational velocities. This is in agreement with tidal locking in close binaries where the components have similar radii. The lack of very rapidly spinning stars among binary systems supports the idea that most stars with νesini~> 300kms-1 in the single-star sample are actually spun-up post-binary interaction products. Finally, the overall similarities (low-velocity peak and intermediate-velocity shoulder) of the spin distribution of binary and single stars argue for a massive star formation process in which the initial spin is set independently of whether stars are formed as single stars or as components of a binary system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a long-term study of the secondary star in the cataclysmic variable AE Aqr, using Roche tomography to indirectly image starspots on the stellar surface spanning 8 years of observations. The seven maps show an abundance of spot features at both high and low latitudes. We find that all maps have at least one large high-latitude spot region, and we discuss its complex evolution between maps, as well as its compatibility with current dynamo theories. Furthermore, we see the apparent growth in fractional spot coverage, fs, around 45° latitude over the duration of observations, with a persistently high fs near latitudes of 20°. These bands of spots may form as part of a magnetic activity cycle, with magnetic flux tubes emerging at different latitudes, similar to the `butterfly' diagram for the Sun. We discuss the nature of flux tube emergence in close binaries, as well as the activity of AE Aqr in the context of other stars.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We know now from radial velocity surveys and transit space missions thatplanets only a few times more massive than our Earth are frequent aroundsolar-type stars. Fundamental questions about their formation history,physical properties, internal structure, and atmosphere composition are,however, still to be solved. We present here the detection of a systemof four low-mass planets around the bright (V = 5.5) and close-by (6.5pc) star HD 219134. This is the first result of the Rocky Planet Searchprogramme with HARPS-N on the Telescopio Nazionale Galileo in La Palma.The inner planet orbits the star in 3.0935 ± 0.0003 days, on aquasi-circular orbit with a semi-major axis of 0.0382 ± 0.0003AU. Spitzer observations allowed us to detect the transit of the planetin front of the star making HD 219134 b the nearest known transitingplanet to date. From the amplitude of the radial velocity variation(2.25 ± 0.22 ms-1) and observed depth of the transit(359 ± 38 ppm), the planet mass and radius are estimated to be4.36 ± 0.44 M⊕ and 1.606 ± 0.086R⊕, leading to a mean density of 5.76 ± 1.09 gcm-3, suggesting a rocky composition. One additional planetwith minimum-mass of 2.78 ± 0.65 M⊕ moves on aclose-in, quasi-circular orbit with a period of 6.767 ± 0.004days. The third planet in the system has a period of 46.66 ± 0.08days and a minimum-mass of 8.94 ± 1.13 M⊕, at0.233 ± 0.002 AU from the star. Its eccentricity is 0.46 ±0.11. The period of this planet is close to the rotational period of thestar estimated from variations of activity indicators (42.3 ± 0.1days). The planetary origin of the signal is, however, thepreferredsolution as no indication of variation at the corresponding frequency isobserved for activity-sensitive parameters. Finally, a fourth additionallonger-period planet of mass of 71 M⊕ orbits the starin 1842 days, on an eccentric orbit (e = 0.34 ± 0.17) at adistance of 2.56 AU.The photometric time series and radial velocities used in this work areavailable in electronic form at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr(ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/584/A72

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present spectral classifications for 438 B-type stars observed as part of the VLT-FLAMES Tarantula Survey (VFTS) in the 30 Doradus region of the Large Magellanic Cloud. Radial velocities are provided for 307 apparently single stars, and for 99 targets with radial-velocity variations which are consistent with them being spectroscopic binaries. We investigate the spatial distribution of the radial velocities across the 30 Dor region, and use the results to identify candidate runaway stars. Excluding potential runaways and members of two older clusters in the survey region (SL 639 and Hodge 301), we determine a systemic velocity for 30 Dor of 271.6 ± 12.2 km s-1 from 273 presumed single stars. Employing a 3σ criterion we identify nine candidate runaway stars (2.9% of the single stars with radial-velocity estimates). The projected rotational velocities of the candidate runaways appear to be significantly different to those of the full B-type sample, with a strong preference for either large (≥345 km s-1) or small (≤65 km s-1) rotational velocities. Of the candidate runaways, VFTS 358 (classified B0.5: V) has the largest differential radial velocity (-106.9 ± 16.2 km s-1), and a preliminary atmospheric analysis finds a significantly enriched nitrogen abundance of 12 + log (N/H) ≳ 8.5. Combined with a large rotational velocity (υe sin i = 345 ± 22 km s-1), this is suggestive of past binary interaction for this star.