6 resultados para spring-summer wave


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Average longevity of the mountain hare (Lepus timidus L., 1758) has been estimated at nine years in the wild (Macdonald D. and Barrett, P. 1993 Mammals of Britain and Europe. Harper Collins Publishers, London) with a maximum recorded age of 18 years for one marked animal (Angerbjörn, A. and Flux, J. E. C. 1995 Lepus timidus. Mammalian Species 495: 1–11). However, the longevity of the Irish hare (L. t. hibernicus Bell 1837) is entirely unknown. A total of 14 Irish hares was trapped and tagged at Belfast International Airport, Co. Antrim from February to April 2005. The sex, age (juvenile or adult) and weight of each animal were recorded. Adults were taken as those individuals >8-10 months old defined by the fusing of the notch between the apophysis and diaphysis of the tibia and humerus (Flux, J. E. C. 1970 Journal of Zoology 161: 75-123). Individual identification was made by a system of colourcoded ear tags (Roxan iD Ltd. Selkirk, Scotland) being inserted in the centre of the pinna of each ear. Each ear tag (6 × 34 mm) and puncture site was disinfected with 70 per cent ethanol prior to insertion. An adult male, #001/002 ‘Blue/Blue’, was tagged on 3 March 2005 weighing 3.8 kg and was sighted during a return site visit on 4 April 2007. An adult female, #026/003 ‘Green/Yellow’, was tagged on 15 April 2005 weighing 4.0 kg and was sighted during return visits on 25 March 2010 and 19 October 2010. The latest possible date of birth for both individuals was spring/summer 2004. Consequently, they were at least 3 years and 6.5 years old, respectively. This is the first record of minimum Irish hare longevity in the wild. These observations suggest that ear tagging does not compromise animal welfare and is an effective means of long-term monitoring. Future research may utilize capture-mark-recapture methods.

Relevância:

80.00% 80.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel method for controlling wave energy converters using active bipolar damping is described and compared with current control methods. The performance of active bipolar damping is modelled numerically for two distinct types of wave energy converter and it is found that in both cases the power capture can be significantly increased relative to optimal linear damping. It is shown that this is because active bipolar damping has the potential for providing a quasi-spring or quasi-inertia, which improves the wave energy converter's tuning and amplitude of motion, resulting in the increase in power capture observed. The practical implementation of active bipolar damping is also discussed. It is noted that active bipolar damping does not require a reactive energy store and thereby reduces the cost and eliminates losses due to the cycling of reactive energy. It is also noted that active bipolar damping could be implemented using a single constant pressure double-acting hydraulic cylinder and so potentially represents a simple, efficient, robust and economic solution to the control of wave energy converters.