9 resultados para spore bacterienne


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nosema ceranae, a microsporidian formerly regarded as confined to its Asiatic host Apis cerana, has recently been shown to parasitise Apis mellifera and to have spread throughout most of the world in the past few years. Using a temporal sequence of N = 28 Nosema isolates from Finland from 1986-2006, we now find (i) that N. ceranae has been present in Europe since at least 1998 and (ii) that it has increased in frequency across this time period relative to Nosema apis, possibly leading to higher mean spore loads per bee. We then present results of a single laboratory infection experiment in which we directly compare the virulence of N. apis with N. ceranae. Though lacking replication, our results suggest (iii) that both parasites build up to equal numbers per bee by day 14 post infection but that (iv) N. ceranae induces significantly higher mortality relative to N. apis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A polymerase chain reaction (PCR) based method was developed for the specific and sensitive diagnosis of the microsporidian parasite Nosema bombi in bumble bees (Bombus spp.). Four primer pairs, amplifying ribosomal RNA (rRNA) gene fragments, were tested on N. bombi and the related microsporidia Nosema apis and Nosema ceranae, both of which infect honey bees. Only primer pair Nbombi-SSU-Jf1/Jr1 could distinguish N. bombi (323 bp amplicon) from these other bee parasites. Primer pairs Nbombi-SSU-Jf1/Jr1 and ITS-f2/r2 were then tested for their sensitivity with N. bombi spore concentrations from 107 down to 10 spores diluted in 100 mu l of either (i) water or (ii) host bumble bee homogenate to simulate natural N. bombi infection (equivalent to the DNA from 10(6) spores down to 1 spore per PCR). Though the N. bombi-specific primer pair Nbombi-SSU-Jf1/Jr1 was relatively insensitive, as few as 10 spores per extract (equivalent to 1 spore per PCR) were detectable using the N. bombi-non-specific primer pair ITS-f2/r2, which amplifies a short fragment of similar to 120 bp. Testing 99 bumble bees for N. bombi infection by light microscopy versus PCR diagnosis with the highly sensitive primer pair ITS-f2/r2 showed the latter to b more accurate. PCR diagnosis of N. bombi using a combination of two primer pairs (Nbombi-SSU-Jf1/Jr1 and ITS-f2/r2) provides increased specificity, sensitivity, and detection of all developmental stages compared with light microscopy. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The classification of a microsporidian parasite observed in the abdominal muscles of amphipod hosts has been repeatedly revised but still remains inconclusive. This parasite has variable spore numbers within a sporophorous vesicle and has been assigned to the genera Glugea, Pleistophora, Stempellia, and Thelohania. We used electron microscopy and molecular evidence to resolve the previous taxonomic confusion and confirm its identification as Pleistophora mulleri. The life cycle of P. mulleri is described from the freshwater amphipod host Gammarus duebeni celticus. Infection appeared as white tubular masses within the abdominal muscle of the host. Light and transmission electron microscope examination revealed the presence of an active microsporidian infection that was diffuse within the muscle block with no evidence of xenoma formation. Paucinucleate merogonial plasmodia were surrounded by an amorphous coat immediately external to the plasmalemma. The amorphous coat developed into a merontogenetic sporophorous vesicle that was present throughout sporulation. Sporogony was polysporous resulting in uninucleate spores, with a bipartite polaroplast, an anisofilar polar filament and a large posterior vacuole. SSU rDNA analysis supported the ultrastructural evidence clearly placing this parasite within the genus Pleistophora. This paper indicates that Pleistophora species are not restricted to vertebrate hosts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cidal activities of aqueous taurolidine (2.0% w/v containing 5.0% wlv polyvinylpyrrolidone as a solubilising agent) and alcoholic taurolidine (2.0% w/v dissolved in Isopropyl alcohol 50% v/v) against spores of Bacillus subtilis NCTC 10073 were evaluated at 20 degrees C, 37 degrees C, 45 degrees C and 55 degrees C. Increased temperature increased both the rate and extent of sporicidal activity of both solutions. Total spore kill was not observed in either solution type over the range of temperatures and contact times examined. There were no observed differences between the sporicidal activities of aqueous and alcoholic taurolidine solutions at all temperatures examined. Ultrasonic energy (50 Hz operating frequency in a 150 W ultrasonic bath in conjunction with increasing temperature allowed to rise naturally from ambient temperature to 41 degrees C over 4 h) enhanced the sporicidal activities of both solution types. However, the difference in activity between the two solution types was not significant. Compared to normal spores, alteration of spore coat layers (hydrogen-form spores) did not alter spore susceptibility to aqueous taurolidine at elevated temperatures of 37 degrees C and 55 degrees C.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Propionibacterium acnes, a non-spore-forming, anaerobic Gram-positive bacterium, is most notably recognized for its association with acne vulgaris (I. Kurokawa et al., Exp. Dermatol. 18:821–832, 2009). We now present the draft genome sequence of an antibiotic-resistantP. acnesstrain, PRP-38, isolated from an acne patient in the United Kingdom and belonging to the novel type IC cluster. Copyright © 2012, American Society for Microbiology. All Rights Reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Burkholderia cenocepacia is a gram-negative, non-spore-forming bacillus and a member of the Burkholderia cepacia complex. B. cenocepacia can survive intracellularly in phagocytic cells and can produce at least one superoxide dismutase (SOD). The inability of O2- to cross the cytoplasmic membrane, coupled with the periplasmic location of Cu,ZnSODs, suggests that periplasmic SODs protect bacteria from superoxide that has an exogenous origin (for example, when cells are faced with reactive oxygen intermediates generated by host cells in response to infection). In this study, we identified the sodC gene encoding a Cu,ZnSOD in B. cenocepacia and demonstrated that a sodC null mutant was not sensitive to a H2O2, 3-morpholinosydnonimine, or paraquat challenge but was killed by exogenous superoxide generated by the xanthine/xanthine oxidase method. The sodC mutant also exhibited a growth defect in liquid medium compared to the parental strain, which could be complemented in trans. The mutant was killed more rapidly than the parental strain was killed in murine macrophage-like cell line RAW 264.7, but killing was eliminated when macrophages were treated with an NADPH oxidase inhibitor. We also confirmed that SodC is periplasmic and identified the metal cofactor. B. cenocepacia SodC was resistant to inhibition by H2O2 and was unusually resistant to KCN for a Cu,ZnSOD. Together, these observations establish that B. cenocepacia produces a periplasmic Cu,ZnSOD that protects this bacterium from exogenously generated O2- and contributes to intracellular survival of this bacterium in macrophages.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plant roots can establish associations with neutral, beneficial and pathogenic groups of soil organisms. Although it has been recognized from the study of individual isolates that these associations are individually important for plant growth, little is known about interactions of whole assemblages of beneficial and pathogenic microorganisms associating with plants. We investigated the influence of an interaction between local arbuscular mycorrhizal (AM) fungal and pathogenic/saprobic microbial assemblages on the growth of two different plant species from semi-arid grasslands in NE Germany (Mallnow near Berlin). In a greenhouse experiment each plant species was grown for six months in either sterile soil or in sterile soil with one of three different treatments: 1) an AM fungal spore fraction isolated from field soil from Mallnow; 2) a soil pathogen/saprobe fraction consisting of a microbial community prepared with field soil from Mallnow and; 3) the combined AM fungal and pathogen/saprobe fractions. While both plant species grew significantly larger in the presence of AM fungi, they responded negatively to the pathogen/saprobe treatment. For both plant species, we found evidence of pathogen protection effects provided by the AM fungal assemblages. These results indicate that interactions between assemblages of beneficial and pathogenic microorganisms can influence the growth of host plants, but that the magnitude of these effects is plant species-specific.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gene flow in macroalgal populations can be strongly influenced by spore or gamete dispersal. This, in turn, is influenced by a convolution of the effects of current flow and specific plant reproductive strategies. Although several studies have demonstrated genetic variability in macroalgal populations over a wide range of spatial scales, the associated current data have generally been poorly resolved spatially and temporally. In this study, we used a combination of population genetic analyses and high-resolution hydrodynamic modelling to investigate potential connectivity between populations of the kelp Laminaria digitata in the Strangford Narrows, a narrow channel characterized by strong currents linking the large semi-enclosed sea lough, Strangford Lough, to the Irish Sea. Levels of genetic structuring based on six microsatellite markers were very low, indicating high levels of gene flow and a pattern of isolation-by-distance, where populations are more likely to exchange migrants with geographically proximal populations, but with occasional long-distance dispersal. This was confirmed by the particle tracking model, which showed that, while the majority of spores settle near the release site, there is potential for dispersal over several kilometres. This combined population genetic and modelling approach suggests that the complex hydrodynamic environment at the entrance to Strangford Lough can facilitate dispersal on a scale exceeding that proposed for L. digitata in particular, and the majority of macroalgae in general. The study demonstrates the potential of integrated physical–biological approaches for the prediction of ecological changes resulting from factors such as anthropogenically induced coastal zone changes.