11 resultados para spicules


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We use images of high spatial and temporal resolution, obtained with the Rapid Oscillations in the Solar Atmosphere instrument at the Dunn Solar Telescope, to reveal how the generation of transverse waves in Type I spicules is a direct result of longitudinal oscillations occurring in the photosphere. Here we show how pressure oscillations, with periodicities in the range of 130–440 s, manifest in small-scale photospheric magnetic bright points, and generate kink waves in the Sun’s outer atmosphere with transverse velocities approaching the local sound speed. Through comparison of our observations with advanced two-dimensional magnetohydrodynamic simulations, we provide evidence for how magnetoacoustic oscillations, generated at the solar surface, funnel upward along Type I spicule structures, before undergoing longitudinal-to-transverse mode conversion into waves at twice the initial driving frequency. The resulting kink modes are visible in chromospheric plasma, with periodicities of 65–220 s, and amplitudes often exceeding 400 km. A sausage mode oscillation also arises as a consequence of the photospheric driver, which is visible in both simulated and observational time series. We conclude that the mode conversion and period modi?cation is a direct consequence of the 90? phase shift encompassing opposite sides of the photospheric driver. The chromospheric energy ?ux of these waves are estimated to be ˜3 × 105 W m-2, which indicates that they are suf?ciently energetic to accelerate the solar wind and heat the localized corona to its multi-million degree temperatures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A number of recent investigations have revealed that transverse waves are ubiquitous in the solar chromosphere. The vast majority of these have been reported in limb spicules and active region fibrils. We investigate long-lived, quiet-Sun, on-disk features such as chromospheric mottles (jet-like features located at the boundaries of supergranular cells) and their transverse motions. The observations were obtained with the Rapid Oscillations in the Solar Atmosphere instrument at the Dunn Solar Telescope. The data set is comprised of simultaneous imaging in the Ha core, Ca II K, and G band of an on-disk quiet-Sun region. Time-distance techniques are used to study the characteristics of the transverse oscillations. We detect over 40 transverse oscillations in both bright and dark mottles, with periods ranging from 70 to 280 s, with the most frequent occurrence at ~165 s. The velocity amplitudes and transverse displacements exhibit characteristics similar to limb spicules. Neighboring mottles oscillating in-phase are also observed. The transverse oscillations of individual mottles are interpreted in terms of magnetohydrodynamic kink waves. Their estimated periods and damping times are consistent with phase mixing and resonant mode conversion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sponge classification has long been based mainly on morphocladistic analyses but is now being greatly challenged by more than 12 years of accumulated analyses of molecular data analyses. The current study used phylogenetic hypotheses based on sequence data from 18S rRNA, 28S rRNA, and the CO1 barcoding fragment, combined with morphology to justify the resurrection of the order Axinellida Lévi, 1953. Axinellida occupies a key position in different morphologically derived topologies. The abandonment of Axinellida and the establishment of Halichondrida Vosmaer, 1887 sensu lato to contain Halichondriidae Gray, 1867, Axinellidae Carter, 1875, Bubaridae Topsent, 1894, Heteroxyidae Dendy, 1905, and a new family Dictyonellidae van Soest et al., 1990 was based on the conclusion that an axially condensed skeleton evolved independently in separate lineages in preference to the less parsimonious assumption that asters (star-shaped spicules), acanthostyles (club-shaped spicules with spines), and sigmata (C-shaped spicules) each evolved more than once. Our new molecular trees are congruent and contrast with the earlier, morphologically based, trees. The results show that axially condensed skeletons, asters, acanthostyles, and sigmata are all homoplasious characters. The unrecognized homoplasious nature of these characters explains much of the incongruence between molecular-based and morphology-based phylogenies. We use the molecular trees presented here as a basis for re-interpreting the morphological characters within Heteroscleromorpha. The implications for the classification of Heteroscleromorpha are discussed and a new order Biemnida ord. nov. is erected.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The presence of photospheric magnetic reconnection has long been thought to give rise to short and impulsive events, such as Ellerman bombs (EBs) and Type II spicules. In this article, we combine high-resolution, high-cadence observations from the Interferometric BIdimensional Spectrometer and Rapid Oscillations in the Solar Atmosphere instruments at the Dunn Solar Telescope, National Solar Observatory, New Mexico, with co-aligned Solar Dynamics Observatory Atmospheric Imaging Assembly and Hinode Solar Optical Telescope (SOT) data to observe small-scale events situated within an active region. These data are then compared with state-of-the-art numerical simulations of the lower atmosphere made using the MURaM code. It is found that brightenings, in both the observations and the simulations, of the wings of the Hα line profile, interpreted as EBs, are often spatially correlated with increases in the intensity of the Fe I λ6302.5 line core. Bipolar regions inferred from Hinode/SOT magnetic field data show evidence of flux cancellation associated, co-spatially, with these EBs, suggesting that magnetic reconnection could be a driver of these high-energy events. Through the analysis of similar events in the simulated lower atmosphere, we are able to infer that line profiles analogous to the observations occur co-spatially with regions of strong opposite-polarity magnetic flux. These observed events and their simulated counterparts are interpreted as evidence of photospheric magnetic reconnection at scales observable using current observational instrumentation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alfvén waves are considered to be viable transporters of the non-thermal energy required to heat the Sun's quiescent atmosphere. An abundance of recent observations, from state-of-the-art facilities, have reported the existence of Alfvén waves in a range of chromospheric and coronal structures. Here, we review the progress made in disentangling the characteristics of transverse kink and torsional linear magnetohydrodynamic (MHD) waves. We outline the simple, yet powerful theory describing their basic properties in (non-)uniform magnetic structures, which closely resemble the building blocks of the real solar atmosphere.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The chromosphere is a thin layer of the solar atmosphere that bridges the relatively cool photosphere and the intensely heated transition region and corona. Compressible and incompressible waves propagating through the chromosphere can supply significant amounts of energy to the interface region and corona. In recent years an abundance of high-resolution observations from state-of-the-art facilities have provided new and exciting ways of disentangling the characteristics of oscillatory phenomena propagating through the dynamic chromosphere. Coupled with rapid advancements in magnetohydrodynamic wave theory, we are now in an ideal position to thoroughly investigate the role waves play in supplying energy to sustain chromospheric and coronal heating. Here, we review the recent progress made in characterising, categorising and interpreting oscillations manifesting in the solar chromosphere, with an impetus placed on their intrinsic energetics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We analyze high temporal and spatial resolution time-series of spectralscans of the Hα line obtained with the CRisp Imaging SpectroPolarimeter instrument mounted on the Swedish Solar Telescope.The data reveal highly dynamic, dark, short-lived structures known asRapid Redshifted and Blueshifted Excursions (RREs, RBEs) that areon-disk absorption features observed in the red and blue wings ofspectral lines formed in the chromosphere. We study the dynamics of RREsand RBEs by tracking their evolution in space and time, measuring thespeed of the apparent motion, line of sight (LOS) Doppler velocity, andtransverse velocity of individual structures. A statistical study oftheir measured properties shows that RREs and RBEs have similaroccurrence rates, lifetimes, lengths, and widths. They also displaynon-periodic, nonlinear transverse motions perpendicular to their axesat speeds of 4-31 km s-1. Furthermore, both typesof structures either appear as high speed jets and blobs that aredirected outwardly from a magnetic bright point with speeds of50-150 km s-1, or emerge within a few seconds. Astudy of the different velocity components suggests that the transversemotions along the LOS of the chromospheric flux tubes are responsiblefor the formation and appearance of these redshifted/blueshiftedstructures. The short lifetime and fast disappearance of the RREs/RBEssuggests that, similar to type II spicules, they are rapidly heated totransition region or even coronal temperatures. We speculate that theKelvin-Helmholtz instability triggered by observed transversemotions of these structures may be a viable mechanism for their heating.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Within the last decade, due to significant improvements in the spatial and temporal resolution of chromospheric data, magneto hydrodynamic (MHD)wave studies in this fascinating region of the Sun's atmosphere have risen to the forefront of solar physics research. In this review we begin by reviewing the challenges and debates that have manifested in relation to MHD wave mode identification in fine-scale chromosphericmagnetic structures, including spicules, fibrils and mottles. Next we goon to discuss how the process of accurately identifying MHD wave modes also has a crucial role to play in estimating their wave energy flux.This is of cardinal importance for estimating what the possible contribution of MHD waves is to solar atmospheric heating. Finally, we detail how such advances in chromospheric MHD wave studies have also allowed us, for the first time, to implement cutting-edge magneto seismological techniques that provide new insight into the sub-resolution plasma structuring of the lower solar atmosphere.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Basal ice samples were collected from ice exposures in a natural subglacial cavity beneath an outlet glacier of Øksfjordjøkelen, North Norway. Sediment and cation (Ca2+, Mg2+, Na+, K+) concentrations were then determined, and indicate stacking of basal ice units producing a repeat pattern of ‘clean firnification ice’ overlying sediment-rich ice. All measured cations show correlation with sediment concentration indicating weathering reactions to be the dominant contributor of cations. Regressions of specific sediment surface area per unit volume with cation concentration are performed and used to predict cation concentrations. These predicted values provide an indication of cation relocation within the basal ice sequence. The results suggest limited melting and refreezing resulting in the relocation of predominantly monovalent cations downward through the profile. Exchange of cations into solution during the melting of sediment-rich ice samples has previously been suggested as a source of error in such investigations. Analyses of sediment-free regelation ice spicules formed at the bed show cation concentrations above firnification ice levels and comparable, in many instances, to the basal ice samples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rapid blue- and redshifted excursions (RBEs and RREs) are likely to be the on-disk counterparts of Type II spicules. Recently, heating signatures from RBEs/RREs have been detected in IRIS slit-jaw images dominated by transition region (TR) lines around network patches. Additionally, signatures of Type II spicules have been observed in Atmospheric Imaging Assembly (AIA) diagnostics. The full-disk, ever-present nature of the AIA diagnostics should provide us with sufficient statistics to directly determine how important RBEs and RREs are to the heating of the TR and corona. We find, with high statistical significance, that at least 11% of the low coronal brightenings detected in a quiet-Sun region in He ii 304 Å can be attributed to either RBEs or RREs as observed in Hα, and a 6% match of Fe IX 171 Å detected events to RBEs or RREs with very similar statistics for both types of Hα features. We took a statistical approach that allows for noisy detections in the coronal channels and provides us with a lower, but statistical significant, bound. Further, we consider matches based on overlapping features in both time and space, and find strong visual indications of further correspondence between coronal events and co-evolving but non-overlapping, RBEs and RREs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study is to explore the suitability of chromospheric images for magnetic modeling of active regions. We use high-resolutionimages (≈0.2"-0.3"), from the Interferometric Bidimensional Spectrometer in the Ca II 8542 Å line, the Rapid Oscillations in the Solar Atmosphere instrument in the Hα 6563Å line, the Interface Region Imaging Spectrograph in the 2796Å line, and compare non-potential magnetic field models obtainedfrom those chromospheric images with those obtained from images of the Atmospheric Imaging Assembly in coronal (171 Å, etc.) and inchromospheric (304 Å) wavelengths. Curvi-linear structures are automatically traced in those images with the OCCULT-2 code, to which we forward-fitted magnetic field lines computed with the Vertical-current Approximation Nonlinear Force Free Field code. We find that the chromospheric images: (1) reveal crisp curvi-linear structures (fibrils, loop segments, spicules) that are extremely well-suited for constraining magnetic modeling; (2) that these curvi-linear structures arefield-aligned with the best-fit solution by a median misalignment angle of μ2 ≈ 4°–7° (3) the free energy computed from coronal data may underestimate that obtained from chromospheric data by a factor of ≈2–4, (4) the height range of chromospheric features is confined to h≲4000 km, while coronal features are detected up to h = 35,000 km; and (5) the plasma-β parameter is β ≈ 10^-5 - 10^-1 for all traced features. We conclude that chromospheric images reveal important magnetic structures that are complementary to coronal images and need to be included in comprehensive magnetic field models, something that is currently not accomodated in standard NLFFF codes.