2 resultados para speed of germination
Resumo:
Water activity, temperature and pH are determinants for biotic activity of cellular systems, biosphere function and, indeed, for all life processes. This study was carried out at high concentrations of glycerol, which concurrently reduces water activity and acts as a stress protectant, to characterize the biophysical capabilities of the most extremely xerophilic organisms known. These were the fungal xerophiles: Xeromyces bisporus (FRR 0025), Aspergillus penicillioides (JH06THJ) and Eurotium halophilicum (FRR 2471). High-glycerol spores were produced and germination was determined using 38 media in the 0.995–0.637 water activity range, 33 media in the 2.80–9.80 pH range and 10 incubation temperatures, from 2 to 50°C. Water activity was modified by supplementing media with glycerol+sucrose, glycerol+NaCl and glycerol+NaCl+sucrose which are known to be biologically permissive for X. bisporus, A. penicillioides and E. halophilicum respectively. The windows and rates for spore germination were quantified for water activity, pH and temperature; symmetry/asymmetry of the germination profiles were then determined in relation to supra- and sub-optimal conditions; and pH- and temperature optima for extreme xerophilicity were quantified. The windows for spore germination were ~1 to 0.637 water activity, pH 2.80–9.80 and > 10 and < 44°C, depending on strain. Germination profiles in relation to water activity and temperature were asymmetrical because conditions known to entropically disorder cellular macromolecules, i.e. supra-optimal water activity and high temperatures, were severely inhibitory. Implications of these processes were considered in relation to the in-situ ecology of extreme conditions and environments; the study also raises a number of unanswered questions which suggest the need for new lines of experimentation.
Resumo:
The knowledge of thermodynamic high-pressure speed of sound in ionic liquids (ILs) is a crucial way either to study the nature of the molecular interactions, structure and packing effects or to determine other key thermodynamic properties of ILs essential for their applications in any chemical and industrial processes. Herein, we report the speed of sound as a function temperature at pressures up to 101 MPa in four ultrapure ILs: 1-propyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, 1-pentyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, and 1-hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, taking into consideration their relaxation behavior. Additionally, to further improve the reliability of the speed of sound results, the density, isentropic compressibility, and isobaric heat capacity as a function of temperature and pressure are calculated using an acoustic method.