7 resultados para species prevalence
Resumo:
With field, laboratory, and modeling approaches, we examined the interplay among habitat structure, intraguild predation (IGP), and parasitism in an ongoing species invasion. Native Gammarus duebeni celticus (Crustacea: Amphipoda) are often, but not always, replaced by the invader Gammarus pulex through differential IGP. The muscle-wasting microsporidian parasite Pleistophora mulleri infects the native but not the invader. We found a highly variable prevalence of P. mulleri in uninvaded rivers, with 0–91% of hosts parasitized per sample. In addition, unparasitized natives dominated fast-flowing riffle patches of river, whereas parasitized individuals dominated slower- flowing, pooled patches. We examined the survivorship of invader and native in single and mixed-species microcosms with high, intermediate, and zero parasite prevalence. G. pulex survivorship was high in all treatments, whereas G. duebeni subsp. celticus survivorship was significantly lower in the presence of the invader. Further, parasitized G. duebeni subsp. celticus experienced near-total elimination. Models of the species replacement process implied that parasite-enhanced IGP would make invasion by G. pulex more likely, regardless of habitat and parasite spatial structure. However, where heterogeneity in parasite prevalence creates a landscape of patches with different susceptibilities to invasion, G. pulex may succeed in cases where invasion would not be possible if patches were equivalent. The different responses of parasitized and unparasitized G. duebeni subsp. celticus to environmental heterogeneity potentially link landscape patterns to the success or failure of the invasion process.
Resumo:
We investigated relationships between richness patterns of rare and common grassland species and environmental factors, focussing on comparing the degree to which the richness patterns of rare and common species are determined by simple environmental variables. Using data collected in the Machair grassland of the Outer Hebrides of Scotland, we fitted spatial regression models using a suite of grazing, soil physicochemical and microtopographic covariates, to nested sub-assemblages of vascular and non-vascular species ranked according to rarity. As expected, we found that common species drive richness patterns, but rare vascular species had significantly stronger affinity for high richness areas. After correcting for the prevalence of individual species distributions, we found differences between common and rare species in 1) the amount of variation explained: richness patterns of common species were better summarised by simple environmental variables, 2) the associations of environmental variables with richness showed systematic trends between common and rare species with coefficient sign reversal for several factors, and 3) richness associations with rare environments: richness patterns of rare vascular species significantly matched rare environments but those of non-vascular species did not. Richness patterns of rare species, at least in this system, may be intrinsically less predictable than those of common species.
Resumo:
Cronobacter (formerly known as Enterobacter sakazakii) is a genus comprising seven species regarded as opportunistic pathogens that can be found in a wide variety of environments and foods, including powdered infant formula (PIF). Cronobacter sakazakii, the major species of this genus, has been epidemiologically linked to cases of bacteremia, meningitis in neonates, and necrotizing enterocolitis, and contaminated PIF has been identified as an important source of infection. Robust and reproducible subtyping methods are required to aid in the detection and investigation, of foodborne outbreaks. In this study, a pulsed-field gel electrophoresis (PFGE) protocol was developed and validated for subtyping Cronobacter species. It was derived from an existing modified PulseNet protocol, wherein XbaI and SpeI were the primary and secondary restriction enzymes used, generating an average of 14.7 and 20.3 bands, respectively. The PFGE method developed was both reproducible and discriminatory for subtyping Cronobacter species.
Resumo:
Red squirrels (Sciurus vulgaris) declined in Great Britain and Ireland during the last century, due to habitat loss and the introduction of grey squirrels (Sciurus carolinensis), which competitively exclude the red squirrel and act as a reservoir for squirrelpox virus (SQPV). The disease is generally fatal to red squirrels and their ecological replacement by grey squirrels is up to 25 times faster where the virus is present. We aimed to determine: (1) the seropositivity and prevalence of SQPV DNA in the invasive and native species at a regional scale; (2) possible SQPV transmission routes; and, (3) virus degradation rates under differing environmental conditions. Grey (n = 208) and red (n = 40) squirrel blood and tissues were sampled. Enzyme-linked immunosorbent assay (ELISA) and quantitative real-time polymerase chain reaction (qPCR) techniques established seropositivity and viral DNA presence, respectively. Overall 8% of squirrels sampled (both species combined) had evidence of SQPV DNA in their tissues and 22% were in possession of antibodies. SQPV prevalence in sampled red squirrels was 2.5%. Viral loads were typically low in grey squirrels by comparison to red squirrels. There was a trend for a greater number of positive samples in spring and summer than in winter. Possible transmission routes were identified through the presence of viral DNA in faeces (red squirrels only), urine and ectoparasites (both species). Virus degradation analyses suggested that, after 30 days of exposure to six combinations of environments, there were more intact virus particles in scabs kept in warm (25°C) and dry conditions than in cooler (5 and 15°C) or wet conditions. We conclude that SQPV is present at low prevalence in invasive grey squirrel populations with a lower prevalence in native red squirrels. Virus transmission could occur through urine especially during warm dry summer conditions but, more notably, via ectoparasites, which are shared by both species.
Resumo:
The presence and biological significance of vertebrate-related steroid sex hormones in aquatic invertebrates are poorly understood. We compared the concentrations of estrogen (17β-estradiol) and testosterone between amplexing male and female freshwater amphipods of three species from two continents: Gammarus duebeni celticusLiljeborg, 1852 and G. pulex(L., 1758) from Europe, and G. pseudolimnaeusBousfield, 1958 from North America. All three species were found to have measureable concentrations of both hormones in whole body lysate samples but the concentrations differed between species, with testosterone differing significantly between species only for male amphipods and estradiol differing significantly between species only for female amphipods. Concentrations of both testosterone and estrogen differed between males and females in two of the three species ( G. duebeni celticusand G. pseudolimnaeus). Females had the highest concentration of both hormones in G. duebeni celticusand the lowest concentration of both hormones in G. pseudolimnaeus. These results contribute to a growing body of evidence that these hormones are endogenously produced and biologically relevant in amphipods. Such evidence is particularly important in light of increasing prevalence of endocrine-disrupting compounds in the environment and the central role played by amphipods in aquatic ecosystems.